微/纳米塑料对人类生殖健康的毒理学效应研究进展

IF 2.9 3区 医学 Q2 TOXICOLOGY
Amirreza Talaie, Sanaz Alaee, Elham Hosseini, Shahabaldin Rezania, Amin Tamadon
{"title":"微/纳米塑料对人类生殖健康的毒理学效应研究进展","authors":"Amirreza Talaie, Sanaz Alaee, Elham Hosseini, Shahabaldin Rezania, Amin Tamadon","doi":"10.1016/j.toxlet.2025.06.021","DOIUrl":null,"url":null,"abstract":"<p><p>Micro/Nano-plastics (MNPs), including microplastics (MPs; <5mm) and nanoplastics (NPs; <100nm), have become pervasive environmental pollutants due to extensive plastic production and insufficient recycling practices. These particles originate from the degradation of larger plastic materials through processes such as photo-oxidation, thermo-oxidation, and incomplete biodegradation, resulting in chemically reactive fragments that persist in air, water, and food. Once released, MNPs enter the human body primarily via ingestion, inhalation, and dermal absorption, ultimately accumulating in various tissues, including reproductive organs. This review provides a comprehensive summary of current knowledge regarding the toxicological effects of MNPs on male and female reproductive health, with a focus on mammalian models and relevance to human exposure. In males, MNPs have been associated with testicular damage, impaired spermatogenesis, reduced sperm count and motility, and disruptions in the hypothalamic-pituitary-gonadal axis. In females, exposure has been linked to altered folliculogenesis, disrupted ovarian hormone levels, impaired oocyte quality, and placental dysfunction. These effects are largely driven by mechanisms involving oxidative stress, inflammation, endocrine disruption, mitochondrial dysfunction, and apoptosis. Furthermore, MNPs have been shown to disrupt gut microbiota composition, contributing to systemic inflammation and reproductive dysfunction through emerging pathways such as the gut-testis axis. Given their widespread presence and multifaceted modes of action, MNPs pose a serious threat to human reproductive health. Therefore, there is an urgent need for stricter environmental regulations, improved waste management, and further research to understand the long-term and transgenerational consequences of MNP exposure.</p>","PeriodicalId":23206,"journal":{"name":"Toxicology letters","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicological Effects of Micro/Nano-plastics on Human Reproductive Health: A Review.\",\"authors\":\"Amirreza Talaie, Sanaz Alaee, Elham Hosseini, Shahabaldin Rezania, Amin Tamadon\",\"doi\":\"10.1016/j.toxlet.2025.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micro/Nano-plastics (MNPs), including microplastics (MPs; <5mm) and nanoplastics (NPs; <100nm), have become pervasive environmental pollutants due to extensive plastic production and insufficient recycling practices. These particles originate from the degradation of larger plastic materials through processes such as photo-oxidation, thermo-oxidation, and incomplete biodegradation, resulting in chemically reactive fragments that persist in air, water, and food. Once released, MNPs enter the human body primarily via ingestion, inhalation, and dermal absorption, ultimately accumulating in various tissues, including reproductive organs. This review provides a comprehensive summary of current knowledge regarding the toxicological effects of MNPs on male and female reproductive health, with a focus on mammalian models and relevance to human exposure. In males, MNPs have been associated with testicular damage, impaired spermatogenesis, reduced sperm count and motility, and disruptions in the hypothalamic-pituitary-gonadal axis. In females, exposure has been linked to altered folliculogenesis, disrupted ovarian hormone levels, impaired oocyte quality, and placental dysfunction. These effects are largely driven by mechanisms involving oxidative stress, inflammation, endocrine disruption, mitochondrial dysfunction, and apoptosis. Furthermore, MNPs have been shown to disrupt gut microbiota composition, contributing to systemic inflammation and reproductive dysfunction through emerging pathways such as the gut-testis axis. Given their widespread presence and multifaceted modes of action, MNPs pose a serious threat to human reproductive health. Therefore, there is an urgent need for stricter environmental regulations, improved waste management, and further research to understand the long-term and transgenerational consequences of MNP exposure.</p>\",\"PeriodicalId\":23206,\"journal\":{\"name\":\"Toxicology letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.toxlet.2025.06.021\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.toxlet.2025.06.021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微/纳米塑料(MNPs),包括微塑料(MPs);
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toxicological Effects of Micro/Nano-plastics on Human Reproductive Health: A Review.

Micro/Nano-plastics (MNPs), including microplastics (MPs; <5mm) and nanoplastics (NPs; <100nm), have become pervasive environmental pollutants due to extensive plastic production and insufficient recycling practices. These particles originate from the degradation of larger plastic materials through processes such as photo-oxidation, thermo-oxidation, and incomplete biodegradation, resulting in chemically reactive fragments that persist in air, water, and food. Once released, MNPs enter the human body primarily via ingestion, inhalation, and dermal absorption, ultimately accumulating in various tissues, including reproductive organs. This review provides a comprehensive summary of current knowledge regarding the toxicological effects of MNPs on male and female reproductive health, with a focus on mammalian models and relevance to human exposure. In males, MNPs have been associated with testicular damage, impaired spermatogenesis, reduced sperm count and motility, and disruptions in the hypothalamic-pituitary-gonadal axis. In females, exposure has been linked to altered folliculogenesis, disrupted ovarian hormone levels, impaired oocyte quality, and placental dysfunction. These effects are largely driven by mechanisms involving oxidative stress, inflammation, endocrine disruption, mitochondrial dysfunction, and apoptosis. Furthermore, MNPs have been shown to disrupt gut microbiota composition, contributing to systemic inflammation and reproductive dysfunction through emerging pathways such as the gut-testis axis. Given their widespread presence and multifaceted modes of action, MNPs pose a serious threat to human reproductive health. Therefore, there is an urgent need for stricter environmental regulations, improved waste management, and further research to understand the long-term and transgenerational consequences of MNP exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology letters
Toxicology letters 医学-毒理学
CiteScore
7.10
自引率
2.90%
发文量
897
审稿时长
33 days
期刊介绍: An international journal for the rapid publication of novel reports on a range of aspects of toxicology, especially mechanisms of toxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信