{"title":"结合胆汁酸代谢组学和肠道微生物组学研究黄连总生物碱的抗肝纤维化作用。","authors":"Qianyi Wang, MeiLing Zhang, Mingwei Meng, Zhuo Luo, Ziping Pan, Lijun Deng, Jinghua Qin, Bingjian Guo, Dan Zhu, Yanmin Zhang, Hongwei Guo, Yonghong Liang, Zhiheng Su","doi":"10.1186/s13020-025-01158-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bile acids and gut microbiota participate in the pathogenesis of liver fibrosis (LF). The total alkaloids of Corydalis saxicola Bunting (TACS) is a traditional Chinese medicine extract that has been used to treat LF, but the underlying mechanisms are not clear. This study performed integrated metabolomics and gut microbiome analysis to study the anti-LF mechanism of TACS using a rat model.</p><p><strong>Methods: </strong>Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to identify the chemical compounds in TACS. Biochemical and histopathological analysis were performed to determine the efficacy of TACS. Bile acid-targeted metabolomics was used to assess changes in the bile acid (BA) profiles in TACS-treated LF rats. 16S rRNA gene sequencing and metagenomics were used to assess changes in the gut microbiota of the TACS-treated LF rats. Antibiotic cocktail treatment and fecal microbiota transplantation (FMT) were used to determine the relationship between the gut microbiota and the anti-LF effects of TACS. Metagenomics was used to identify significantly enriched gut microbiota after TACS treatment and its correlation with the anti-LF effects was verified by in vivo experiments.</p><p><strong>Results: </strong>TACS treatment significantly reduced the levels of serum liver enzymes, fibrosis and pro-inflammatory cytokines in the liver. TACS significantly increased the levels of chenodeoxycholic acid (CDCA) and taurochenodeoxycholic acid (TCDCA) in the cecum and decreased the levels of cholic acid (CA) and deoxycholic acid (DCA) in the liver of the LF rats. TACS significantly increased the abundances of Lactobacillus and Akkermansia in the LF rats. Antibiotic cocktail treatment and FMT have shown that the effect of TACS cure liver fibrosis depends on the gut microbiota. The abundance of Lactobacillus reuteri was significantly increased by TACS. Administration of Lactobacillus reuteri via gavage ameliorated LF.</p><p><strong>Conclusions: </strong>TACS exerted anti-LF effects in rats by modulating bile acid metabolism and gut microbiome.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"106"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226865/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration bile acid metabolomics and gut microbiome to study the anti-liver fibrosis effects of total alkaloids of Corydalis saxicola Bunting.\",\"authors\":\"Qianyi Wang, MeiLing Zhang, Mingwei Meng, Zhuo Luo, Ziping Pan, Lijun Deng, Jinghua Qin, Bingjian Guo, Dan Zhu, Yanmin Zhang, Hongwei Guo, Yonghong Liang, Zhiheng Su\",\"doi\":\"10.1186/s13020-025-01158-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bile acids and gut microbiota participate in the pathogenesis of liver fibrosis (LF). The total alkaloids of Corydalis saxicola Bunting (TACS) is a traditional Chinese medicine extract that has been used to treat LF, but the underlying mechanisms are not clear. This study performed integrated metabolomics and gut microbiome analysis to study the anti-LF mechanism of TACS using a rat model.</p><p><strong>Methods: </strong>Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to identify the chemical compounds in TACS. Biochemical and histopathological analysis were performed to determine the efficacy of TACS. Bile acid-targeted metabolomics was used to assess changes in the bile acid (BA) profiles in TACS-treated LF rats. 16S rRNA gene sequencing and metagenomics were used to assess changes in the gut microbiota of the TACS-treated LF rats. Antibiotic cocktail treatment and fecal microbiota transplantation (FMT) were used to determine the relationship between the gut microbiota and the anti-LF effects of TACS. Metagenomics was used to identify significantly enriched gut microbiota after TACS treatment and its correlation with the anti-LF effects was verified by in vivo experiments.</p><p><strong>Results: </strong>TACS treatment significantly reduced the levels of serum liver enzymes, fibrosis and pro-inflammatory cytokines in the liver. TACS significantly increased the levels of chenodeoxycholic acid (CDCA) and taurochenodeoxycholic acid (TCDCA) in the cecum and decreased the levels of cholic acid (CA) and deoxycholic acid (DCA) in the liver of the LF rats. TACS significantly increased the abundances of Lactobacillus and Akkermansia in the LF rats. Antibiotic cocktail treatment and FMT have shown that the effect of TACS cure liver fibrosis depends on the gut microbiota. The abundance of Lactobacillus reuteri was significantly increased by TACS. Administration of Lactobacillus reuteri via gavage ameliorated LF.</p><p><strong>Conclusions: </strong>TACS exerted anti-LF effects in rats by modulating bile acid metabolism and gut microbiome.</p>\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"20 1\",\"pages\":\"106\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-025-01158-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01158-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Integration bile acid metabolomics and gut microbiome to study the anti-liver fibrosis effects of total alkaloids of Corydalis saxicola Bunting.
Background: Bile acids and gut microbiota participate in the pathogenesis of liver fibrosis (LF). The total alkaloids of Corydalis saxicola Bunting (TACS) is a traditional Chinese medicine extract that has been used to treat LF, but the underlying mechanisms are not clear. This study performed integrated metabolomics and gut microbiome analysis to study the anti-LF mechanism of TACS using a rat model.
Methods: Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to identify the chemical compounds in TACS. Biochemical and histopathological analysis were performed to determine the efficacy of TACS. Bile acid-targeted metabolomics was used to assess changes in the bile acid (BA) profiles in TACS-treated LF rats. 16S rRNA gene sequencing and metagenomics were used to assess changes in the gut microbiota of the TACS-treated LF rats. Antibiotic cocktail treatment and fecal microbiota transplantation (FMT) were used to determine the relationship between the gut microbiota and the anti-LF effects of TACS. Metagenomics was used to identify significantly enriched gut microbiota after TACS treatment and its correlation with the anti-LF effects was verified by in vivo experiments.
Results: TACS treatment significantly reduced the levels of serum liver enzymes, fibrosis and pro-inflammatory cytokines in the liver. TACS significantly increased the levels of chenodeoxycholic acid (CDCA) and taurochenodeoxycholic acid (TCDCA) in the cecum and decreased the levels of cholic acid (CA) and deoxycholic acid (DCA) in the liver of the LF rats. TACS significantly increased the abundances of Lactobacillus and Akkermansia in the LF rats. Antibiotic cocktail treatment and FMT have shown that the effect of TACS cure liver fibrosis depends on the gut microbiota. The abundance of Lactobacillus reuteri was significantly increased by TACS. Administration of Lactobacillus reuteri via gavage ameliorated LF.
Conclusions: TACS exerted anti-LF effects in rats by modulating bile acid metabolism and gut microbiome.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.