{"title":"解开骨骼肌胰岛素抵抗:分子机制和运动的恢复作用。","authors":"Katie L Whytock, Bret H Goodpaster","doi":"10.1161/CIRCRESAHA.125.325532","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle is essential for movement and maintaining energy homeostasis and is the primary tissue for insulin-stimulated glucose uptake. Skeletal muscle is composed of various cell types that help to govern the delivery, transport, and metabolism of nutrients to and within the tissue. Dysregulation of these processes can result in impaired insulin-stimulated glucose uptake and dysglycemia-insulin resistance and type 2 diabetes. Acute exercise and chronic exercise training provide a robust stimulus to improve nutrient delivery, nutrient transport into a cell, and subsequent storage and oxidation to help improve insulin sensitivity. This review details the molecular mechanisms of skeletal muscle insulin resistance and how exercise counteracts these defects, highlighting the key role of exercise in muscle health and disease.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"137 2","pages":"184-204"},"PeriodicalIF":16.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Skeletal Muscle Insulin Resistance: Molecular Mechanisms and the Restorative Role of Exercise.\",\"authors\":\"Katie L Whytock, Bret H Goodpaster\",\"doi\":\"10.1161/CIRCRESAHA.125.325532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle is essential for movement and maintaining energy homeostasis and is the primary tissue for insulin-stimulated glucose uptake. Skeletal muscle is composed of various cell types that help to govern the delivery, transport, and metabolism of nutrients to and within the tissue. Dysregulation of these processes can result in impaired insulin-stimulated glucose uptake and dysglycemia-insulin resistance and type 2 diabetes. Acute exercise and chronic exercise training provide a robust stimulus to improve nutrient delivery, nutrient transport into a cell, and subsequent storage and oxidation to help improve insulin sensitivity. This review details the molecular mechanisms of skeletal muscle insulin resistance and how exercise counteracts these defects, highlighting the key role of exercise in muscle health and disease.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\"137 2\",\"pages\":\"184-204\"},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.125.325532\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.125.325532","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Unraveling Skeletal Muscle Insulin Resistance: Molecular Mechanisms and the Restorative Role of Exercise.
Skeletal muscle is essential for movement and maintaining energy homeostasis and is the primary tissue for insulin-stimulated glucose uptake. Skeletal muscle is composed of various cell types that help to govern the delivery, transport, and metabolism of nutrients to and within the tissue. Dysregulation of these processes can result in impaired insulin-stimulated glucose uptake and dysglycemia-insulin resistance and type 2 diabetes. Acute exercise and chronic exercise training provide a robust stimulus to improve nutrient delivery, nutrient transport into a cell, and subsequent storage and oxidation to help improve insulin sensitivity. This review details the molecular mechanisms of skeletal muscle insulin resistance and how exercise counteracts these defects, highlighting the key role of exercise in muscle health and disease.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.