小鼠压力过载时,心包脂肪组织促进向心力衰竭的过渡,并降低射血分数。

IF 8 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Yi Xuan Shia, Kathleen Pappritz, Anna Cristina Kaltenbach, Guo Li, Valentina Fardella, Sophie Van Linthout, Daniela Carnevale, Sabine Steffens, Sarah-Lena Puhl
{"title":"小鼠压力过载时,心包脂肪组织促进向心力衰竭的过渡,并降低射血分数。","authors":"Yi Xuan Shia, Kathleen Pappritz, Anna Cristina Kaltenbach, Guo Li, Valentina Fardella, Sophie Van Linthout, Daniela Carnevale, Sabine Steffens, Sarah-Lena Puhl","doi":"10.1007/s00395-025-01116-x","DOIUrl":null,"url":null,"abstract":"<p><p>In patients, severity of pressure-induced heart failure (HF) due to aortic stenosis and metabolic disorder correlates with thickness and mass of epicardial adipose tissue (EAT). We examined the role of the less studied pericardial adipose tissue (PAT) during manifestation and progression of pressure-induced HF in mice. Progressive remodeling was assessed in C57BL/6 J males, aged 9 weeks, following sham surgery or transverse aortic constriction (TAC) for 1 week (early pressure-overload), 8 (chronic pressure-overload), or 12 weeks (HF with reduced ejection fraction, HFrEF) with or without concomitant PAT excision. PAT removal did not affect early (1-week TAC) or chronic (8 weeks) pressure-overload-induced concentric remodeling. However, initial PAT excision prevented lung congestion, progressive LV dilation and systolic dysfunction and thereby protected against transition to HFrEF. This protection was associated with alleviation of early TAC-induced pro-inflammatory monocyte and macrophage expansion, attenuation of persistent pro-hypertrophic, pro-inflammatory and pro-fibrotic LV gene expression and the reduction of microscar and perivascular fibrosis in the long term. The latter was reflected by reduced peri-coronary accumulation of pro-fibrotic CD206<sup>+</sup> macrophages, and prevention of periostin upregulation. Moreover, PAT protein directly activated naïve cardiac fibroblasts in vitro while bulk RNAsequencing revealed the initiation of an extracellular matrix deposition, monocyte recruiting, and macrophage activation program in the PAT early upon TAC. Our data suggest that PAT does not exert crucial impact on pressure-induced hypertrophy, while its removal counteracts HFrEF manifestation in mice, at least in part, by preventing excessive fibrotic responses suggested to derive from reciprocal fibroblast-macrophage interactions.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pericardial adipose tissue promotes transition to heart failure with reduced ejection fraction upon pressure-overload in mice.\",\"authors\":\"Yi Xuan Shia, Kathleen Pappritz, Anna Cristina Kaltenbach, Guo Li, Valentina Fardella, Sophie Van Linthout, Daniela Carnevale, Sabine Steffens, Sarah-Lena Puhl\",\"doi\":\"10.1007/s00395-025-01116-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In patients, severity of pressure-induced heart failure (HF) due to aortic stenosis and metabolic disorder correlates with thickness and mass of epicardial adipose tissue (EAT). We examined the role of the less studied pericardial adipose tissue (PAT) during manifestation and progression of pressure-induced HF in mice. Progressive remodeling was assessed in C57BL/6 J males, aged 9 weeks, following sham surgery or transverse aortic constriction (TAC) for 1 week (early pressure-overload), 8 (chronic pressure-overload), or 12 weeks (HF with reduced ejection fraction, HFrEF) with or without concomitant PAT excision. PAT removal did not affect early (1-week TAC) or chronic (8 weeks) pressure-overload-induced concentric remodeling. However, initial PAT excision prevented lung congestion, progressive LV dilation and systolic dysfunction and thereby protected against transition to HFrEF. This protection was associated with alleviation of early TAC-induced pro-inflammatory monocyte and macrophage expansion, attenuation of persistent pro-hypertrophic, pro-inflammatory and pro-fibrotic LV gene expression and the reduction of microscar and perivascular fibrosis in the long term. The latter was reflected by reduced peri-coronary accumulation of pro-fibrotic CD206<sup>+</sup> macrophages, and prevention of periostin upregulation. Moreover, PAT protein directly activated naïve cardiac fibroblasts in vitro while bulk RNAsequencing revealed the initiation of an extracellular matrix deposition, monocyte recruiting, and macrophage activation program in the PAT early upon TAC. Our data suggest that PAT does not exert crucial impact on pressure-induced hypertrophy, while its removal counteracts HFrEF manifestation in mice, at least in part, by preventing excessive fibrotic responses suggested to derive from reciprocal fibroblast-macrophage interactions.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-025-01116-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-025-01116-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在患者中,由主动脉狭窄和代谢紊乱引起的压力性心力衰竭(HF)的严重程度与心外膜脂肪组织(EAT)的厚度和质量相关。我们研究了较少研究的心包脂肪组织(PAT)在小鼠压力性心衰的表现和进展中的作用。在9周龄的C57BL/ 6j男性患者中,在假手术或横断主动脉缩窄(TAC)后1周(早期压力过载)、8周(慢性压力过载)或12周(HF伴射血分数降低,HFrEF)伴或不伴PAT切除后,评估进行性重构。PAT去除对早期(1周TAC)或慢性(8周)压力过载诱导的同心重构没有影响。然而,最初的PAT切除可防止肺充血,进行性左室扩张和收缩功能障碍,从而防止过渡到HFrEF。这种保护作用与早期tac诱导的促炎单核细胞和巨噬细胞扩张的减轻,持续促肥厚、促炎和促纤维化的LV基因表达的减弱以及长期微疤痕和血管周围纤维化的减少有关。后者表现为减少促纤维化CD206+巨噬细胞在冠状动脉周围的积聚,防止骨膜蛋白上调。此外,PAT蛋白在体外直接激活naïve心脏成纤维细胞,而大量rnas测序显示,在TAC早期,PAT启动了细胞外基质沉积、单核细胞募集和巨噬细胞激活程序。我们的数据表明,PAT对压力诱导的肥大没有关键影响,而去除它至少部分地抵消了小鼠HFrEF的表现,通过防止过度的纤维化反应,这些反应可能源于成纤维细胞与巨噬细胞的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pericardial adipose tissue promotes transition to heart failure with reduced ejection fraction upon pressure-overload in mice.

In patients, severity of pressure-induced heart failure (HF) due to aortic stenosis and metabolic disorder correlates with thickness and mass of epicardial adipose tissue (EAT). We examined the role of the less studied pericardial adipose tissue (PAT) during manifestation and progression of pressure-induced HF in mice. Progressive remodeling was assessed in C57BL/6 J males, aged 9 weeks, following sham surgery or transverse aortic constriction (TAC) for 1 week (early pressure-overload), 8 (chronic pressure-overload), or 12 weeks (HF with reduced ejection fraction, HFrEF) with or without concomitant PAT excision. PAT removal did not affect early (1-week TAC) or chronic (8 weeks) pressure-overload-induced concentric remodeling. However, initial PAT excision prevented lung congestion, progressive LV dilation and systolic dysfunction and thereby protected against transition to HFrEF. This protection was associated with alleviation of early TAC-induced pro-inflammatory monocyte and macrophage expansion, attenuation of persistent pro-hypertrophic, pro-inflammatory and pro-fibrotic LV gene expression and the reduction of microscar and perivascular fibrosis in the long term. The latter was reflected by reduced peri-coronary accumulation of pro-fibrotic CD206+ macrophages, and prevention of periostin upregulation. Moreover, PAT protein directly activated naïve cardiac fibroblasts in vitro while bulk RNAsequencing revealed the initiation of an extracellular matrix deposition, monocyte recruiting, and macrophage activation program in the PAT early upon TAC. Our data suggest that PAT does not exert crucial impact on pressure-induced hypertrophy, while its removal counteracts HFrEF manifestation in mice, at least in part, by preventing excessive fibrotic responses suggested to derive from reciprocal fibroblast-macrophage interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信