前体microRNA-20a的结构特征调控Dicer-TRBP加工。

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yaping Liu, Cade T Harkner, Megan N Westwood, Aldrex Munsayac, Sarah C Keane
{"title":"前体microRNA-20a的结构特征调控Dicer-TRBP加工。","authors":"Yaping Liu, Cade T Harkner, Megan N Westwood, Aldrex Munsayac, Sarah C Keane","doi":"10.1016/j.jmb.2025.169317","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression of target messenger (m) RNAs. To maintain proper miRNA expression levels, the enzymatic processing of primary and precursor miRNA elements must be strictly controlled. However, the molecular determinants underlying this strict regulation of miRNA biogenesis are not fully understood. Here, we determined the solution structure of pre-miR-20a, an oncogenic miRNA and component of the oncomiR-1 cluster, using nuclear magnetic spectroscopy (NMR) spectroscopy and small angle X-ray scattering (SAXS). Our structural studies informed on key secondary structure elements of pre-miR-20a which may control its enzymatic processing, namely a flexible apical loop and single-nucleotide bulge near the dicing site. We found that alternative conformations within pre-miR-20a's apical loop function to self-regulate its Dicer-TRBP processing, and that a single nucleotide bulge at the -5 position from the 5'-cleavage site is critical for efficient processing. We additionally found that a disease-related single-nucleotide polymorphism in pre-miR-20a, predicted to disrupt the structure near the dicing site, resulted in reduced processing. These results further our structural understanding of the oncomiR-1 cluster and show how transient RNA conformers can function to self-regulate maturation.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"169317"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Features Within Precursor microRNA-20a Regulate Dicer-TRBP Processing.\",\"authors\":\"Yaping Liu, Cade T Harkner, Megan N Westwood, Aldrex Munsayac, Sarah C Keane\",\"doi\":\"10.1016/j.jmb.2025.169317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression of target messenger (m) RNAs. To maintain proper miRNA expression levels, the enzymatic processing of primary and precursor miRNA elements must be strictly controlled. However, the molecular determinants underlying this strict regulation of miRNA biogenesis are not fully understood. Here, we determined the solution structure of pre-miR-20a, an oncogenic miRNA and component of the oncomiR-1 cluster, using nuclear magnetic spectroscopy (NMR) spectroscopy and small angle X-ray scattering (SAXS). Our structural studies informed on key secondary structure elements of pre-miR-20a which may control its enzymatic processing, namely a flexible apical loop and single-nucleotide bulge near the dicing site. We found that alternative conformations within pre-miR-20a's apical loop function to self-regulate its Dicer-TRBP processing, and that a single nucleotide bulge at the -5 position from the 5'-cleavage site is critical for efficient processing. We additionally found that a disease-related single-nucleotide polymorphism in pre-miR-20a, predicted to disrupt the structure near the dicing site, resulted in reduced processing. These results further our structural understanding of the oncomiR-1 cluster and show how transient RNA conformers can function to self-regulate maturation.</p>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\" \",\"pages\":\"169317\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmb.2025.169317\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.169317","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

MicroRNAs (miRNAs)是一种小的非编码rna,可在转录后调控靶信使rna的基因表达。为了维持适当的miRNA表达水平,必须严格控制初级和前体miRNA元件的酶加工。然而,这种严格调控miRNA生物发生的分子决定因素尚不完全清楚。在这里,我们使用核磁波谱(NMR)和小角x射线散射(SAXS)确定了pre-miR-20a的溶液结构,pre-miR-20a是一种致癌miRNA,也是oncomiR-1簇的组成部分。我们的结构研究揭示了pre-miR-20a可能控制其酶促过程的关键二级结构元件,即一个灵活的顶端环和切粒位点附近的单核苷酸凸起。我们发现pre-miR-20a的顶端环功能中存在其他构象来自我调节其Dicer-TRBP加工,并且5'切割位点-5位置的单个核苷酸凸起对于有效加工至关重要。我们还发现pre-miR-20a中与疾病相关的单核苷酸多态性,预计会破坏切丁位点附近的结构,导致加工减少。这些结果进一步加深了我们对oncomiR-1簇的结构理解,并展示了瞬时RNA构象如何发挥自我调节成熟的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Features Within Precursor microRNA-20a Regulate Dicer-TRBP Processing.

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression of target messenger (m) RNAs. To maintain proper miRNA expression levels, the enzymatic processing of primary and precursor miRNA elements must be strictly controlled. However, the molecular determinants underlying this strict regulation of miRNA biogenesis are not fully understood. Here, we determined the solution structure of pre-miR-20a, an oncogenic miRNA and component of the oncomiR-1 cluster, using nuclear magnetic spectroscopy (NMR) spectroscopy and small angle X-ray scattering (SAXS). Our structural studies informed on key secondary structure elements of pre-miR-20a which may control its enzymatic processing, namely a flexible apical loop and single-nucleotide bulge near the dicing site. We found that alternative conformations within pre-miR-20a's apical loop function to self-regulate its Dicer-TRBP processing, and that a single nucleotide bulge at the -5 position from the 5'-cleavage site is critical for efficient processing. We additionally found that a disease-related single-nucleotide polymorphism in pre-miR-20a, predicted to disrupt the structure near the dicing site, resulted in reduced processing. These results further our structural understanding of the oncomiR-1 cluster and show how transient RNA conformers can function to self-regulate maturation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信