{"title":"热下的CRDSAT:计算设计标签变体的平衡稳定性、亲和力和功能效用。","authors":"Esteban Guiot, Marie-Eve Chagot, Alexis Boutilliat, Pascal Reboul, Alexandre Kriznik, Marc Quinternet","doi":"10.1021/acs.biochem.5c00128","DOIUrl":null,"url":null,"abstract":"<p><p>In general, the easier and cheaper the expression and purification processes are, the more profitable the production of a recombinant protein of interest is, especially in the industrial world. Previously, we have developed the lectinic CRD<sub>SAT</sub> tag that we demonstrated is efficient at cost-effectively purifying passenger proteins. It also has the advantage of being quite small and limiting steric hindrance upon release by protease cleavage. Here, we used protein sequence optimization to design highly thermostable versions of CRD<sub>SAT</sub> and showed that the midpoint denaturation temperature could be increased from 55.8 to 92.2 °C. In fact, our variants (called CRD<sub>VLs</sub>) possess the ability to support a heating step during the purification process, which represents an easy way to eliminate thermolabile proteins coming from the host cells when the recombinant proteins are produced in bacteria. To challenge our CRD<sub>VLs</sub>, we fused them to a PET hydrolase exhibiting promising industrial activity at 70 °C and showed that CRD<sub>VL</sub>-tagged enzymes remain active, even after heating, with a balancing effect due to the CRD<sub>VL</sub> internal mutations. Surprisingly, whereas mutations in CRD<sub>VLs</sub> were introduced far from the d-lactose binding site, we also showed that the affinity toward the disaccharide was clearly improved in the variants to reach a dissociation constant (<i>K</i><sub>d</sub>) of around 30 μM (the <i>K</i><sub>d</sub> of the CRD<sub>SAT</sub> being measured at around 90 μM), paving the way for the use of our tag in applications such as lectin-based affinity enrichment or those requiring few, cheap, and simple purification steps.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRD<sub>SAT</sub> under Heat: Balancing Stability, Affinity, and Functional Utility of Computationally Designed Tag Variants.\",\"authors\":\"Esteban Guiot, Marie-Eve Chagot, Alexis Boutilliat, Pascal Reboul, Alexandre Kriznik, Marc Quinternet\",\"doi\":\"10.1021/acs.biochem.5c00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In general, the easier and cheaper the expression and purification processes are, the more profitable the production of a recombinant protein of interest is, especially in the industrial world. Previously, we have developed the lectinic CRD<sub>SAT</sub> tag that we demonstrated is efficient at cost-effectively purifying passenger proteins. It also has the advantage of being quite small and limiting steric hindrance upon release by protease cleavage. Here, we used protein sequence optimization to design highly thermostable versions of CRD<sub>SAT</sub> and showed that the midpoint denaturation temperature could be increased from 55.8 to 92.2 °C. In fact, our variants (called CRD<sub>VLs</sub>) possess the ability to support a heating step during the purification process, which represents an easy way to eliminate thermolabile proteins coming from the host cells when the recombinant proteins are produced in bacteria. To challenge our CRD<sub>VLs</sub>, we fused them to a PET hydrolase exhibiting promising industrial activity at 70 °C and showed that CRD<sub>VL</sub>-tagged enzymes remain active, even after heating, with a balancing effect due to the CRD<sub>VL</sub> internal mutations. Surprisingly, whereas mutations in CRD<sub>VLs</sub> were introduced far from the d-lactose binding site, we also showed that the affinity toward the disaccharide was clearly improved in the variants to reach a dissociation constant (<i>K</i><sub>d</sub>) of around 30 μM (the <i>K</i><sub>d</sub> of the CRD<sub>SAT</sub> being measured at around 90 μM), paving the way for the use of our tag in applications such as lectin-based affinity enrichment or those requiring few, cheap, and simple purification steps.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.5c00128\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00128","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CRDSAT under Heat: Balancing Stability, Affinity, and Functional Utility of Computationally Designed Tag Variants.
In general, the easier and cheaper the expression and purification processes are, the more profitable the production of a recombinant protein of interest is, especially in the industrial world. Previously, we have developed the lectinic CRDSAT tag that we demonstrated is efficient at cost-effectively purifying passenger proteins. It also has the advantage of being quite small and limiting steric hindrance upon release by protease cleavage. Here, we used protein sequence optimization to design highly thermostable versions of CRDSAT and showed that the midpoint denaturation temperature could be increased from 55.8 to 92.2 °C. In fact, our variants (called CRDVLs) possess the ability to support a heating step during the purification process, which represents an easy way to eliminate thermolabile proteins coming from the host cells when the recombinant proteins are produced in bacteria. To challenge our CRDVLs, we fused them to a PET hydrolase exhibiting promising industrial activity at 70 °C and showed that CRDVL-tagged enzymes remain active, even after heating, with a balancing effect due to the CRDVL internal mutations. Surprisingly, whereas mutations in CRDVLs were introduced far from the d-lactose binding site, we also showed that the affinity toward the disaccharide was clearly improved in the variants to reach a dissociation constant (Kd) of around 30 μM (the Kd of the CRDSAT being measured at around 90 μM), paving the way for the use of our tag in applications such as lectin-based affinity enrichment or those requiring few, cheap, and simple purification steps.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.