工业物联网框架下基于多表示计算机视觉的行为分析辅助课堂教学

IF 0.5 Q4 TELECOMMUNICATIONS
Jiang Hui, Li Yuelong, Zhang Jian
{"title":"工业物联网框架下基于多表示计算机视觉的行为分析辅助课堂教学","authors":"Jiang Hui,&nbsp;Li Yuelong,&nbsp;Zhang Jian","doi":"10.1002/itl2.70079","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In traditional classroom settings, teachers predominantly rely on visual observation and verbal questioning to assess student status, limiting the ability to deliver timely and precise feedback. To address this limitation, this study introduces a multi-modal computer vision-based behavior analysis approach within an Industrial Internet of Things (IIoT) framework. The proposed system utilizes multiple cameras to capture behavioral indicators—such as speech, facial expressions, and body posture—and integrates deep learning models (e.g., YOLO, SSD) for real-time recognition of students' learning states. By leveraging IIoT's data transmission and edge computing capabilities, the system significantly enhances the accuracy and responsiveness of classroom behavior monitoring. Experimental results indicate that the method effectively detects student attention, engagement, and emotional states, thereby supporting dynamic instructional adjustments. This research contributes to advancing smart education initiatives aligned with Industry 5.0 paradigms.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior Analysis-Assisted Classroom Teaching Based on Multi-Representation Computer Vision Under the Industrial Internet of Things Framework\",\"authors\":\"Jiang Hui,&nbsp;Li Yuelong,&nbsp;Zhang Jian\",\"doi\":\"10.1002/itl2.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In traditional classroom settings, teachers predominantly rely on visual observation and verbal questioning to assess student status, limiting the ability to deliver timely and precise feedback. To address this limitation, this study introduces a multi-modal computer vision-based behavior analysis approach within an Industrial Internet of Things (IIoT) framework. The proposed system utilizes multiple cameras to capture behavioral indicators—such as speech, facial expressions, and body posture—and integrates deep learning models (e.g., YOLO, SSD) for real-time recognition of students' learning states. By leveraging IIoT's data transmission and edge computing capabilities, the system significantly enhances the accuracy and responsiveness of classroom behavior monitoring. Experimental results indicate that the method effectively detects student attention, engagement, and emotional states, thereby supporting dynamic instructional adjustments. This research contributes to advancing smart education initiatives aligned with Industry 5.0 paradigms.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在传统的课堂环境中,教师主要依靠视觉观察和口头提问来评估学生的状态,这限制了他们提供及时、准确反馈的能力。为了解决这一限制,本研究在工业物联网(IIoT)框架内引入了一种基于多模态计算机视觉的行为分析方法。该系统利用多个摄像头捕捉行为指标,如语音、面部表情和身体姿势,并集成深度学习模型(如YOLO、SSD),实时识别学生的学习状态。通过利用工业物联网的数据传输和边缘计算能力,该系统显著提高了课堂行为监控的准确性和响应能力。实验结果表明,该方法可以有效地检测学生的注意力、参与度和情绪状态,从而支持动态教学调整。这项研究有助于推进与工业5.0范式一致的智能教育计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior Analysis-Assisted Classroom Teaching Based on Multi-Representation Computer Vision Under the Industrial Internet of Things Framework

In traditional classroom settings, teachers predominantly rely on visual observation and verbal questioning to assess student status, limiting the ability to deliver timely and precise feedback. To address this limitation, this study introduces a multi-modal computer vision-based behavior analysis approach within an Industrial Internet of Things (IIoT) framework. The proposed system utilizes multiple cameras to capture behavioral indicators—such as speech, facial expressions, and body posture—and integrates deep learning models (e.g., YOLO, SSD) for real-time recognition of students' learning states. By leveraging IIoT's data transmission and edge computing capabilities, the system significantly enhances the accuracy and responsiveness of classroom behavior monitoring. Experimental results indicate that the method effectively detects student attention, engagement, and emotional states, thereby supporting dynamic instructional adjustments. This research contributes to advancing smart education initiatives aligned with Industry 5.0 paradigms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信