Saswat Kumar Ram;Sanjeev Mani Yadav;Jayendra Kumar;Priyanka Singh;Banee Bandana Das
{"title":"永恒物3.0:面向可持续物联网的能量收集系统混合模式SoC","authors":"Saswat Kumar Ram;Sanjeev Mani Yadav;Jayendra Kumar;Priyanka Singh;Banee Bandana Das","doi":"10.1109/ACCESS.2025.3583798","DOIUrl":null,"url":null,"abstract":"The power requirement in IoT is essential to fulfill the energy demand of the power-hungry sensors at end nodes. The use of fixed batteries restricts sustainability and makes the system costly. This work presents a battery-less solar energy harvesting system (EHS). Designing a state-of-the-art EHS needs a lot of exercise. Proper modeling of each unit makes the system robust and can be tuned at every stage to get an optimum result. The proposed EHS comprises a clock generator, DC-DC converters, analog-to-digital converters (ADCs), a maximum power point tracking (MPPT) unit, and a digital controller. The DC-DC converter and ADCs are designed in Verilog-A. The MPPT module digital controller is designed using Verilog HDL. The digital controller decides the mode of operation of the EHS based on power availability. Verilog-AMS allows us to do the mixed-mode simulation very early, so errors can only be eliminated in the initial stages at the circuit level. The proposed EHS is simulated in the Cadence Virtuoso AMS Designer Simulator (using the Incisive Run tool). The input solar voltage is 1 V to 1.5 V, and the output is 3 V to 3.5 V. The EHS provides supply voltages of 3.3 V, 1.8 V, and 1 V to the end node devices in IoT. The EHS is further designed with the parameters obtained from modeling in Cadence using virtuoso (for analog circuits) and genus (for digital circuits) and finally combined in Innovous (mixed-mode tool) for tape-out.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"112765-112776"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053756","citationCount":"0","resultStr":"{\"title\":\"Eternal-Thing 3.0: Mixed-Mode SoC for Energy Harvesting System Towards Sustainable IoT\",\"authors\":\"Saswat Kumar Ram;Sanjeev Mani Yadav;Jayendra Kumar;Priyanka Singh;Banee Bandana Das\",\"doi\":\"10.1109/ACCESS.2025.3583798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power requirement in IoT is essential to fulfill the energy demand of the power-hungry sensors at end nodes. The use of fixed batteries restricts sustainability and makes the system costly. This work presents a battery-less solar energy harvesting system (EHS). Designing a state-of-the-art EHS needs a lot of exercise. Proper modeling of each unit makes the system robust and can be tuned at every stage to get an optimum result. The proposed EHS comprises a clock generator, DC-DC converters, analog-to-digital converters (ADCs), a maximum power point tracking (MPPT) unit, and a digital controller. The DC-DC converter and ADCs are designed in Verilog-A. The MPPT module digital controller is designed using Verilog HDL. The digital controller decides the mode of operation of the EHS based on power availability. Verilog-AMS allows us to do the mixed-mode simulation very early, so errors can only be eliminated in the initial stages at the circuit level. The proposed EHS is simulated in the Cadence Virtuoso AMS Designer Simulator (using the Incisive Run tool). The input solar voltage is 1 V to 1.5 V, and the output is 3 V to 3.5 V. The EHS provides supply voltages of 3.3 V, 1.8 V, and 1 V to the end node devices in IoT. The EHS is further designed with the parameters obtained from modeling in Cadence using virtuoso (for analog circuits) and genus (for digital circuits) and finally combined in Innovous (mixed-mode tool) for tape-out.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"112765-112776\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053756\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11053756/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11053756/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Eternal-Thing 3.0: Mixed-Mode SoC for Energy Harvesting System Towards Sustainable IoT
The power requirement in IoT is essential to fulfill the energy demand of the power-hungry sensors at end nodes. The use of fixed batteries restricts sustainability and makes the system costly. This work presents a battery-less solar energy harvesting system (EHS). Designing a state-of-the-art EHS needs a lot of exercise. Proper modeling of each unit makes the system robust and can be tuned at every stage to get an optimum result. The proposed EHS comprises a clock generator, DC-DC converters, analog-to-digital converters (ADCs), a maximum power point tracking (MPPT) unit, and a digital controller. The DC-DC converter and ADCs are designed in Verilog-A. The MPPT module digital controller is designed using Verilog HDL. The digital controller decides the mode of operation of the EHS based on power availability. Verilog-AMS allows us to do the mixed-mode simulation very early, so errors can only be eliminated in the initial stages at the circuit level. The proposed EHS is simulated in the Cadence Virtuoso AMS Designer Simulator (using the Incisive Run tool). The input solar voltage is 1 V to 1.5 V, and the output is 3 V to 3.5 V. The EHS provides supply voltages of 3.3 V, 1.8 V, and 1 V to the end node devices in IoT. The EHS is further designed with the parameters obtained from modeling in Cadence using virtuoso (for analog circuits) and genus (for digital circuits) and finally combined in Innovous (mixed-mode tool) for tape-out.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.