{"title":"数字双支持阻塞感知动态毫米波多跳V2X通信","authors":"Supat Roongpraiwan;Zongdian Li;Tao Yu;Kei Sakaguchi","doi":"10.1109/ACCESS.2025.3583879","DOIUrl":null,"url":null,"abstract":"Millimeter wave (mmWave) technology in vehicle-to-everything (V2X) communication offers unprecedented data rates and low latency, but faces significant reliability challenges due to signal blockages and limited range. This paper introduces a novel system for managing dynamic multi-hop mmWave V2X communications in complex blocking environments. We present a system architecture that integrates a mobility digital twin (DT) with the multi-hop routing control plane, providing a comprehensive, real-time view of the network and its surrounding traffic environment. This integration enables the control plane to make informed routing decisions based on rich contextual data about vehicles, infrastructure, and potential signal blockages. Leveraging this DT-enhanced architecture, we propose an advanced routing algorithm that combines high-precision environmental data with trajectory prediction to achieve blockage-aware mmWave multi-hop V2X routing. Our algorithm anticipates network topology changes and adapts topology dynamically to maintain reliable connections. We evaluate our approach through proof-of-concept simulations using a mobility DT of the Nishishinjuku area. Results demonstrate that our DT-enabled routing strategy significantly outperforms conventional methods in maintaining reliable mmWave V2X connections across various traffic scenarios, including fully connected and mixed traffic environments.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"113130-113141"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053827","citationCount":"0","resultStr":"{\"title\":\"Digital Twin-Enabled Blockage-Aware Dynamic mmWave Multi-Hop V2X Communication\",\"authors\":\"Supat Roongpraiwan;Zongdian Li;Tao Yu;Kei Sakaguchi\",\"doi\":\"10.1109/ACCESS.2025.3583879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter wave (mmWave) technology in vehicle-to-everything (V2X) communication offers unprecedented data rates and low latency, but faces significant reliability challenges due to signal blockages and limited range. This paper introduces a novel system for managing dynamic multi-hop mmWave V2X communications in complex blocking environments. We present a system architecture that integrates a mobility digital twin (DT) with the multi-hop routing control plane, providing a comprehensive, real-time view of the network and its surrounding traffic environment. This integration enables the control plane to make informed routing decisions based on rich contextual data about vehicles, infrastructure, and potential signal blockages. Leveraging this DT-enhanced architecture, we propose an advanced routing algorithm that combines high-precision environmental data with trajectory prediction to achieve blockage-aware mmWave multi-hop V2X routing. Our algorithm anticipates network topology changes and adapts topology dynamically to maintain reliable connections. We evaluate our approach through proof-of-concept simulations using a mobility DT of the Nishishinjuku area. Results demonstrate that our DT-enabled routing strategy significantly outperforms conventional methods in maintaining reliable mmWave V2X connections across various traffic scenarios, including fully connected and mixed traffic environments.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"113130-113141\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053827\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11053827/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11053827/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Digital Twin-Enabled Blockage-Aware Dynamic mmWave Multi-Hop V2X Communication
Millimeter wave (mmWave) technology in vehicle-to-everything (V2X) communication offers unprecedented data rates and low latency, but faces significant reliability challenges due to signal blockages and limited range. This paper introduces a novel system for managing dynamic multi-hop mmWave V2X communications in complex blocking environments. We present a system architecture that integrates a mobility digital twin (DT) with the multi-hop routing control plane, providing a comprehensive, real-time view of the network and its surrounding traffic environment. This integration enables the control plane to make informed routing decisions based on rich contextual data about vehicles, infrastructure, and potential signal blockages. Leveraging this DT-enhanced architecture, we propose an advanced routing algorithm that combines high-precision environmental data with trajectory prediction to achieve blockage-aware mmWave multi-hop V2X routing. Our algorithm anticipates network topology changes and adapts topology dynamically to maintain reliable connections. We evaluate our approach through proof-of-concept simulations using a mobility DT of the Nishishinjuku area. Results demonstrate that our DT-enabled routing strategy significantly outperforms conventional methods in maintaining reliable mmWave V2X connections across various traffic scenarios, including fully connected and mixed traffic environments.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.