用深扩散模型反演地震阻抗

Xiaofang Liao;Junxing Cao
{"title":"用深扩散模型反演地震阻抗","authors":"Xiaofang Liao;Junxing Cao","doi":"10.1109/LGRS.2025.3582929","DOIUrl":null,"url":null,"abstract":"Seismic impedance inversion plays a crucial role in reservoir characterization. The estimation of impedance from seismic data is generally ill-posed; nevertheless, the advent of deep learning has led to breakthroughs in this domain. Diffusion models, which are state-of-the-art deep generative models, have recently attracted considerable attention in various deep learning problems. This letter introduces InverDiff, a deep learning method that adapts a deep diffusion model for seismic impedance inversion by casting impedance prediction as a conditional impedance generation task. InverDiff defines forward and reverse processes. The forward process involves a series of steps in which the training data are gradually diffused to pure Gaussian noise. Conversely, iterative refinement inference reverses the forward process and transforms the noise back into impedance. We use InverDiff for seismic impedance inversion on synthetic and field data, demonstrating promising results compared with those of two convolutional neural networks (CNNs).","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InverDiff: Seismic Impedance Inversion Using a Deep Diffusion Model\",\"authors\":\"Xiaofang Liao;Junxing Cao\",\"doi\":\"10.1109/LGRS.2025.3582929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismic impedance inversion plays a crucial role in reservoir characterization. The estimation of impedance from seismic data is generally ill-posed; nevertheless, the advent of deep learning has led to breakthroughs in this domain. Diffusion models, which are state-of-the-art deep generative models, have recently attracted considerable attention in various deep learning problems. This letter introduces InverDiff, a deep learning method that adapts a deep diffusion model for seismic impedance inversion by casting impedance prediction as a conditional impedance generation task. InverDiff defines forward and reverse processes. The forward process involves a series of steps in which the training data are gradually diffused to pure Gaussian noise. Conversely, iterative refinement inference reverses the forward process and transforms the noise back into impedance. We use InverDiff for seismic impedance inversion on synthetic and field data, demonstrating promising results compared with those of two convolutional neural networks (CNNs).\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11050433/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11050433/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震阻抗反演在储层表征中起着至关重要的作用。从地震资料估计阻抗通常是不适定的;然而,深度学习的出现导致了这一领域的突破。扩散模型作为最先进的深度生成模型,近年来在各种深度学习问题中引起了广泛的关注。这封信介绍了InverDiff,这是一种深度学习方法,通过将阻抗预测作为条件阻抗生成任务,将深度扩散模型用于地震阻抗反演。InverDiff定义正向和反向过程。前向过程包括一系列步骤,其中训练数据逐渐扩散到纯高斯噪声。相反,迭代细化推理将正演过程逆转,并将噪声转换回阻抗。我们使用InverDiff对合成数据和现场数据进行地震阻抗反演,与两种卷积神经网络(cnn)的结果相比,显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
InverDiff: Seismic Impedance Inversion Using a Deep Diffusion Model
Seismic impedance inversion plays a crucial role in reservoir characterization. The estimation of impedance from seismic data is generally ill-posed; nevertheless, the advent of deep learning has led to breakthroughs in this domain. Diffusion models, which are state-of-the-art deep generative models, have recently attracted considerable attention in various deep learning problems. This letter introduces InverDiff, a deep learning method that adapts a deep diffusion model for seismic impedance inversion by casting impedance prediction as a conditional impedance generation task. InverDiff defines forward and reverse processes. The forward process involves a series of steps in which the training data are gradually diffused to pure Gaussian noise. Conversely, iterative refinement inference reverses the forward process and transforms the noise back into impedance. We use InverDiff for seismic impedance inversion on synthetic and field data, demonstrating promising results compared with those of two convolutional neural networks (CNNs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信