几何形状的指数增长

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Nada Almalki , Siddharth Gupta , Othon Michail
{"title":"几何形状的指数增长","authors":"Nada Almalki ,&nbsp;Siddharth Gupta ,&nbsp;Othon Michail","doi":"10.1016/j.tcs.2025.115439","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the exponential growth of geometric structures starting from a single node, focusing on centralized growth operations. We identify a parameter <em>k</em>, representing the number of turning points within specific parts of a shape. We prove that, if edges can only be formed between a newly generated node and the node that created it and cannot be deleted, trees having at most <em>k</em> turning points on every root-to-leaf path can be grown in <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>+</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time steps and spirals with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> turning points can be grown in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time steps, <em>n</em> being the size of the final shape. For this model, we also show that the maximum number of turning points in a root-to-leaf path of a tree is a lower bound on the number of time steps to grow the tree and that there exists a class of paths such that any path in the class with <em>k</em> turning points requires <span><math><mi>Ω</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></math></span> time steps to be grown. If nodes can additionally be connected as soon as they become adjacent, we prove that if a shape <em>S</em> has a spanning tree with at most <em>k</em> turning points on every root-to-leaf path, then the adjacency closure of <em>S</em> can be grown in <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>+</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time steps. In the strongest version of the model, where, additionally, edges can be deleted and neighbors handed over to new nodes, we present a universal algorithm for growing any shape <em>S</em> exponentially fast.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1053 ","pages":"Article 115439"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exponential growth of geometric shapes\",\"authors\":\"Nada Almalki ,&nbsp;Siddharth Gupta ,&nbsp;Othon Michail\",\"doi\":\"10.1016/j.tcs.2025.115439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we explore the exponential growth of geometric structures starting from a single node, focusing on centralized growth operations. We identify a parameter <em>k</em>, representing the number of turning points within specific parts of a shape. We prove that, if edges can only be formed between a newly generated node and the node that created it and cannot be deleted, trees having at most <em>k</em> turning points on every root-to-leaf path can be grown in <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>+</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time steps and spirals with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> turning points can be grown in <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time steps, <em>n</em> being the size of the final shape. For this model, we also show that the maximum number of turning points in a root-to-leaf path of a tree is a lower bound on the number of time steps to grow the tree and that there exists a class of paths such that any path in the class with <em>k</em> turning points requires <span><math><mi>Ω</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></math></span> time steps to be grown. If nodes can additionally be connected as soon as they become adjacent, we prove that if a shape <em>S</em> has a spanning tree with at most <em>k</em> turning points on every root-to-leaf path, then the adjacency closure of <em>S</em> can be grown in <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>+</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time steps. In the strongest version of the model, where, additionally, edges can be deleted and neighbors handed over to new nodes, we present a universal algorithm for growing any shape <em>S</em> exponentially fast.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1053 \",\"pages\":\"Article 115439\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525003779\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003779","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们从单个节点出发,探讨几何结构的指数增长,重点是集中增长操作。我们确定一个参数k,表示形状的特定部分的转折点的数量。我们证明,如果边只能在新生成的节点和创建它的节点之间形成,并且不能被删除,那么在每条根到叶路径上最多有k个拐点的树可以在O(klog (k) +log (n))时间步长中生长,具有O(log (n))拐点的螺旋可以在O(log (n))时间步长中生长,n是最终形状的大小。对于这个模型,我们还证明了树的根到叶路径上的最大拐点数是树生长的时间步数的下界,并且存在一类路径,使得该类中任何具有k个拐点的路径都需要Ω(klog (k))时间步长才能生长。如果一个形状S的每条根到叶的路径上有一棵最多有k个拐点的生成树,那么S的邻接闭包可以在O(klog (k) +log (n))时间步长中生长。在模型的最强版本中,可以删除边缘并将邻居移交给新节点,我们提出了一种通用算法,可以以指数速度增长任何形状S。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the exponential growth of geometric shapes
In this paper, we explore the exponential growth of geometric structures starting from a single node, focusing on centralized growth operations. We identify a parameter k, representing the number of turning points within specific parts of a shape. We prove that, if edges can only be formed between a newly generated node and the node that created it and cannot be deleted, trees having at most k turning points on every root-to-leaf path can be grown in O(klogk+logn) time steps and spirals with O(logn) turning points can be grown in O(logn) time steps, n being the size of the final shape. For this model, we also show that the maximum number of turning points in a root-to-leaf path of a tree is a lower bound on the number of time steps to grow the tree and that there exists a class of paths such that any path in the class with k turning points requires Ω(klogk) time steps to be grown. If nodes can additionally be connected as soon as they become adjacent, we prove that if a shape S has a spanning tree with at most k turning points on every root-to-leaf path, then the adjacency closure of S can be grown in O(klogk+logn) time steps. In the strongest version of the model, where, additionally, edges can be deleted and neighbors handed over to new nodes, we present a universal algorithm for growing any shape S exponentially fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信