利用磁场梯度的铁磁天基人造神经元装置

IF 2.5 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
H. Vigo-Cotrina , S. Navarro-Vilca , S. Urcia-Romero
{"title":"利用磁场梯度的铁磁天基人造神经元装置","authors":"H. Vigo-Cotrina ,&nbsp;S. Navarro-Vilca ,&nbsp;S. Urcia-Romero","doi":"10.1016/j.jmmm.2025.173321","DOIUrl":null,"url":null,"abstract":"<div><div>Skyrmioniums are protected topological textures that have potential applications in spintronics. This study demonstrates the feasibility of simulating an artificial neuron device with leaky-integrate-and-fire (LIF) functionality on a ferromagnetic racetrack using micromagnetic simulations. First, we determine the magnetic field range required to stabilize a skyrmionium. Then, we show that applying a magnetic field gradient enables the controlled displacement of a skyrmionium along the racetrack. Our results indicates that the displacement speed increases with a stronger gradient intensity or a lower damping constant. These findings agree with those predicted by the Thiele equation. We also demonstrate that applying current pulses along with a magnetic field gradient makes it possible to emulate LIF functionality on a racetrack, using skyrmioniums as a fundamental building block.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"629 ","pages":"Article 173321"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetic skyrmionium-based artificial neuron devices using magnetic field gradients\",\"authors\":\"H. Vigo-Cotrina ,&nbsp;S. Navarro-Vilca ,&nbsp;S. Urcia-Romero\",\"doi\":\"10.1016/j.jmmm.2025.173321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Skyrmioniums are protected topological textures that have potential applications in spintronics. This study demonstrates the feasibility of simulating an artificial neuron device with leaky-integrate-and-fire (LIF) functionality on a ferromagnetic racetrack using micromagnetic simulations. First, we determine the magnetic field range required to stabilize a skyrmionium. Then, we show that applying a magnetic field gradient enables the controlled displacement of a skyrmionium along the racetrack. Our results indicates that the displacement speed increases with a stronger gradient intensity or a lower damping constant. These findings agree with those predicted by the Thiele equation. We also demonstrate that applying current pulses along with a magnetic field gradient makes it possible to emulate LIF functionality on a racetrack, using skyrmioniums as a fundamental building block.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"629 \",\"pages\":\"Article 173321\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885325005530\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325005530","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

skyrmionium是一种受保护的拓扑结构,在自旋电子学中有潜在的应用。本研究证明了利用微磁模拟在铁磁赛道上模拟具有泄漏集成点火(LIF)功能的人工神经元装置的可行性。首先,我们要确定稳定天基铵所需的磁场范围。然后,我们证明了施加磁场梯度可以使skyrmionium沿赛道的可控位移。结果表明,位移速度随梯度强度的增大或阻尼常数的减小而增大。这些发现与蒂勒方程的预测一致。我们还证明,将电流脉冲与磁场梯度一起应用,可以在赛道上模拟LIF功能,使用skyrmionium作为基本构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferromagnetic skyrmionium-based artificial neuron devices using magnetic field gradients
Skyrmioniums are protected topological textures that have potential applications in spintronics. This study demonstrates the feasibility of simulating an artificial neuron device with leaky-integrate-and-fire (LIF) functionality on a ferromagnetic racetrack using micromagnetic simulations. First, we determine the magnetic field range required to stabilize a skyrmionium. Then, we show that applying a magnetic field gradient enables the controlled displacement of a skyrmionium along the racetrack. Our results indicates that the displacement speed increases with a stronger gradient intensity or a lower damping constant. These findings agree with those predicted by the Thiele equation. We also demonstrate that applying current pulses along with a magnetic field gradient makes it possible to emulate LIF functionality on a racetrack, using skyrmioniums as a fundamental building block.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信