具有优异抗蠕变性能的新型聚合物涂层体系的设计与开发。

Npj materials sustainability Pub Date : 2025-01-01 Epub Date: 2025-06-30 DOI:10.1038/s44296-025-00063-x
Nader Ameli, Jaya Verma, Beth Muthoni Irungu, Sepideh Aliasghari, Andrei Shishkin, Allan Matthews, Saurav Goel
{"title":"具有优异抗蠕变性能的新型聚合物涂层体系的设计与开发。","authors":"Nader Ameli, Jaya Verma, Beth Muthoni Irungu, Sepideh Aliasghari, Andrei Shishkin, Allan Matthews, Saurav Goel","doi":"10.1038/s44296-025-00063-x","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer coatings often suffer from poor mechanical properties, including low strength and modulus, making them prone to creep failure under minimal loads. To address these challenges, this study introduces a novel polyurethane (PU) coating reinforced with 4 wt% hollow ceramic microspheres (HCM) coated with a TiO₂ shell (HCM@TiO₂). The modified coating exhibited a 111% increase in nanoindentation hardness, along with significant reductions in creep displacement (31%), indentation creep rate (19%), and creep strain rate sensitivity (28%) compared to the base PU. In contrast, a second additive, solid silica nanospheres with TiO₂ shells (SSN@TiO₂), did not improve mechanical performance and even increased creep displacement by 31%, likely due to polymer chain sliding. Notably, the HCM@TiO₂ coating maintained and even improved its creep resistance under higher loads. These findings suggest that HCM@TiO₂-enhanced coatings could be highly beneficial for applications requiring resistance to high-cycle creep-fatigue failure.</p>","PeriodicalId":520010,"journal":{"name":"Npj materials sustainability","volume":"3 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208877/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design and development of a novel polymer coating system with exceptional creep resistance.\",\"authors\":\"Nader Ameli, Jaya Verma, Beth Muthoni Irungu, Sepideh Aliasghari, Andrei Shishkin, Allan Matthews, Saurav Goel\",\"doi\":\"10.1038/s44296-025-00063-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymer coatings often suffer from poor mechanical properties, including low strength and modulus, making them prone to creep failure under minimal loads. To address these challenges, this study introduces a novel polyurethane (PU) coating reinforced with 4 wt% hollow ceramic microspheres (HCM) coated with a TiO₂ shell (HCM@TiO₂). The modified coating exhibited a 111% increase in nanoindentation hardness, along with significant reductions in creep displacement (31%), indentation creep rate (19%), and creep strain rate sensitivity (28%) compared to the base PU. In contrast, a second additive, solid silica nanospheres with TiO₂ shells (SSN@TiO₂), did not improve mechanical performance and even increased creep displacement by 31%, likely due to polymer chain sliding. Notably, the HCM@TiO₂ coating maintained and even improved its creep resistance under higher loads. These findings suggest that HCM@TiO₂-enhanced coatings could be highly beneficial for applications requiring resistance to high-cycle creep-fatigue failure.</p>\",\"PeriodicalId\":520010,\"journal\":{\"name\":\"Npj materials sustainability\",\"volume\":\"3 1\",\"pages\":\"21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208877/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npj materials sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44296-025-00063-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj materials sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44296-025-00063-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物涂层通常具有较差的机械性能,包括低强度和模量,使其在最小载荷下容易发生蠕变破坏。为了解决这些挑战,本研究引入了一种新型聚氨酯(PU)涂层,该涂层由4wt %的空心陶瓷微球(HCM)增强,并涂有TiO₂外壳(HCM@TiO₂)。与基础PU相比,改性涂层的纳米压痕硬度提高了111%,同时蠕变位移(31%)、压痕蠕变率(19%)和蠕变应变率敏感性(28%)显著降低。相比之下,第二种添加剂,具有TiO₂壳的固体二氧化硅纳米球(SSN@TiO₂),没有提高机械性能,甚至增加了31%的蠕变位移,可能是由于聚合物链滑动。值得注意的是,HCM@TiO₂涂层在更高的载荷下保持甚至提高了其抗蠕变性能。这些发现表明,HCM@TiO₂增强涂层对于需要抗高周蠕变疲劳失效的应用非常有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and development of a novel polymer coating system with exceptional creep resistance.

Polymer coatings often suffer from poor mechanical properties, including low strength and modulus, making them prone to creep failure under minimal loads. To address these challenges, this study introduces a novel polyurethane (PU) coating reinforced with 4 wt% hollow ceramic microspheres (HCM) coated with a TiO₂ shell (HCM@TiO₂). The modified coating exhibited a 111% increase in nanoindentation hardness, along with significant reductions in creep displacement (31%), indentation creep rate (19%), and creep strain rate sensitivity (28%) compared to the base PU. In contrast, a second additive, solid silica nanospheres with TiO₂ shells (SSN@TiO₂), did not improve mechanical performance and even increased creep displacement by 31%, likely due to polymer chain sliding. Notably, the HCM@TiO₂ coating maintained and even improved its creep resistance under higher loads. These findings suggest that HCM@TiO₂-enhanced coatings could be highly beneficial for applications requiring resistance to high-cycle creep-fatigue failure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信