Mohammad R Salmanpour, Sajad Amiri, Sara Gharibi, Ahmad Shariftabrizi, Yixi Xu, William B Weeks, Arman Rahmim, Ilker Hacihaliloglu
{"title":"放射组学特征的放射学和生物学词典:解决个性化前列腺癌中可理解的人工智能问题,词典版PM1.0。","authors":"Mohammad R Salmanpour, Sajad Amiri, Sara Gharibi, Ahmad Shariftabrizi, Yixi Xu, William B Weeks, Arman Rahmim, Ilker Hacihaliloglu","doi":"10.1007/s10278-025-01585-5","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) can advance medical diagnostics, but interpretability limits its clinical use. This work links standardized quantitative Radiomics features (RF) extracted from medical images with clinical frameworks like PI-RADS, ensuring AI models are understandable and aligned with clinical practice. We investigate the connection between visual semantic features defined in PI-RADS and associated risk factors, moving beyond abnormal imaging findings, and establishing a shared framework between medical and AI professionals by creating a standardized radiological/biological RF dictionary. Six interpretable and seven complex classifiers, combined with nine interpretable feature selection algorithms (FSA), were applied to RFs extracted from segmented lesions in T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) multiparametric MRI sequences to predict TCIA-UCLA scores, grouped as low-risk (scores 1-3) and high-risk (scores 4-5). We then utilized the created dictionary to interpret the best predictive models. Combining sequences with FSAs including ANOVA F-test, Correlation Coefficient, and Fisher Score, and utilizing logistic regression, identified key features: The 90th percentile from T2WI, (reflecting hypo-intensity related to prostate cancer risk; Variance from T2WI (lesion heterogeneity; shape metrics including Least Axis Length and Surface Area to Volume ratio from ADC, describing lesion shape and compactness; and Run Entropy from ADC (texture consistency). This approach achieved the highest average accuracy of 0.78 ± 0.01, significantly outperforming single-sequence methods (p-value < 0.05). The developed dictionary for Prostate-MRI (PM1.0) serves as a common language and fosters collaboration between clinical professionals and AI developers to advance trustworthy AI solutions that support reliable/interpretable clinical decisions.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiological and Biological Dictionary of Radiomics Features: Addressing Understandable AI Issues in Personalized Prostate Cancer, Dictionary Version PM1.0.\",\"authors\":\"Mohammad R Salmanpour, Sajad Amiri, Sara Gharibi, Ahmad Shariftabrizi, Yixi Xu, William B Weeks, Arman Rahmim, Ilker Hacihaliloglu\",\"doi\":\"10.1007/s10278-025-01585-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) can advance medical diagnostics, but interpretability limits its clinical use. This work links standardized quantitative Radiomics features (RF) extracted from medical images with clinical frameworks like PI-RADS, ensuring AI models are understandable and aligned with clinical practice. We investigate the connection between visual semantic features defined in PI-RADS and associated risk factors, moving beyond abnormal imaging findings, and establishing a shared framework between medical and AI professionals by creating a standardized radiological/biological RF dictionary. Six interpretable and seven complex classifiers, combined with nine interpretable feature selection algorithms (FSA), were applied to RFs extracted from segmented lesions in T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) multiparametric MRI sequences to predict TCIA-UCLA scores, grouped as low-risk (scores 1-3) and high-risk (scores 4-5). We then utilized the created dictionary to interpret the best predictive models. Combining sequences with FSAs including ANOVA F-test, Correlation Coefficient, and Fisher Score, and utilizing logistic regression, identified key features: The 90th percentile from T2WI, (reflecting hypo-intensity related to prostate cancer risk; Variance from T2WI (lesion heterogeneity; shape metrics including Least Axis Length and Surface Area to Volume ratio from ADC, describing lesion shape and compactness; and Run Entropy from ADC (texture consistency). This approach achieved the highest average accuracy of 0.78 ± 0.01, significantly outperforming single-sequence methods (p-value < 0.05). The developed dictionary for Prostate-MRI (PM1.0) serves as a common language and fosters collaboration between clinical professionals and AI developers to advance trustworthy AI solutions that support reliable/interpretable clinical decisions.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01585-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01585-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Radiological and Biological Dictionary of Radiomics Features: Addressing Understandable AI Issues in Personalized Prostate Cancer, Dictionary Version PM1.0.
Artificial intelligence (AI) can advance medical diagnostics, but interpretability limits its clinical use. This work links standardized quantitative Radiomics features (RF) extracted from medical images with clinical frameworks like PI-RADS, ensuring AI models are understandable and aligned with clinical practice. We investigate the connection between visual semantic features defined in PI-RADS and associated risk factors, moving beyond abnormal imaging findings, and establishing a shared framework between medical and AI professionals by creating a standardized radiological/biological RF dictionary. Six interpretable and seven complex classifiers, combined with nine interpretable feature selection algorithms (FSA), were applied to RFs extracted from segmented lesions in T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) multiparametric MRI sequences to predict TCIA-UCLA scores, grouped as low-risk (scores 1-3) and high-risk (scores 4-5). We then utilized the created dictionary to interpret the best predictive models. Combining sequences with FSAs including ANOVA F-test, Correlation Coefficient, and Fisher Score, and utilizing logistic regression, identified key features: The 90th percentile from T2WI, (reflecting hypo-intensity related to prostate cancer risk; Variance from T2WI (lesion heterogeneity; shape metrics including Least Axis Length and Surface Area to Volume ratio from ADC, describing lesion shape and compactness; and Run Entropy from ADC (texture consistency). This approach achieved the highest average accuracy of 0.78 ± 0.01, significantly outperforming single-sequence methods (p-value < 0.05). The developed dictionary for Prostate-MRI (PM1.0) serves as a common language and fosters collaboration between clinical professionals and AI developers to advance trustworthy AI solutions that support reliable/interpretable clinical decisions.