Andrea Campagner , Elia Mario Biganzoli , Clara Balsano , Cristina Cereda , Federico Cabitza
{"title":"建模未知:医疗保健中不确定性感知机器学习的愿景。","authors":"Andrea Campagner , Elia Mario Biganzoli , Clara Balsano , Cristina Cereda , Federico Cabitza","doi":"10.1016/j.ijmedinf.2025.106014","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of machine learning (ML) into healthcare is accelerating, driven by the proliferation of biomedical data and the promise of data-driven clinical support. A key challenge in this context is managing the pervasive uncertainty inherent in medical reasoning and decision-making. Despite its recognized importance, uncertainty is often underrepresented in the design and evaluation of clinical AI systems.</div><div>Here we report an editorial overview of a special issue dedicated to uncertainty modeling in medical AI, which gathers theoretical, methodological, and practical contributions addressing this critical gap. Across these works, authors reveal that fewer than 4% of studies address uncertainty explicitly, and propose alternative design principles—such as optimizing for clinical net benefit or embedding explainability with confidence estimates. Notable contributions include the RelAI system for real-time prediction reliability, empirical findings on how uncertainty communication shapes clinical interpretation, and benchmarks for out-of-distribution detection in tabular data. Furthermore, this issue highlights the use of causal reasoning and anomaly detection to enhance system robustness and accountability.</div><div>Together, these studies argue that representing, communicating, and operationalizing uncertainty are essential not only for clinical safety but also for building trust in AI-driven care. This special issue thus repositions uncertainty from a limitation to a foundational asset in the responsible deployment of ML in healthcare.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"203 ","pages":"Article 106014"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling unknowns: A vision for uncertainty-aware machine learning in healthcare\",\"authors\":\"Andrea Campagner , Elia Mario Biganzoli , Clara Balsano , Cristina Cereda , Federico Cabitza\",\"doi\":\"10.1016/j.ijmedinf.2025.106014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of machine learning (ML) into healthcare is accelerating, driven by the proliferation of biomedical data and the promise of data-driven clinical support. A key challenge in this context is managing the pervasive uncertainty inherent in medical reasoning and decision-making. Despite its recognized importance, uncertainty is often underrepresented in the design and evaluation of clinical AI systems.</div><div>Here we report an editorial overview of a special issue dedicated to uncertainty modeling in medical AI, which gathers theoretical, methodological, and practical contributions addressing this critical gap. Across these works, authors reveal that fewer than 4% of studies address uncertainty explicitly, and propose alternative design principles—such as optimizing for clinical net benefit or embedding explainability with confidence estimates. Notable contributions include the RelAI system for real-time prediction reliability, empirical findings on how uncertainty communication shapes clinical interpretation, and benchmarks for out-of-distribution detection in tabular data. Furthermore, this issue highlights the use of causal reasoning and anomaly detection to enhance system robustness and accountability.</div><div>Together, these studies argue that representing, communicating, and operationalizing uncertainty are essential not only for clinical safety but also for building trust in AI-driven care. This special issue thus repositions uncertainty from a limitation to a foundational asset in the responsible deployment of ML in healthcare.</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"203 \",\"pages\":\"Article 106014\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138650562500231X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138650562500231X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Modeling unknowns: A vision for uncertainty-aware machine learning in healthcare
The integration of machine learning (ML) into healthcare is accelerating, driven by the proliferation of biomedical data and the promise of data-driven clinical support. A key challenge in this context is managing the pervasive uncertainty inherent in medical reasoning and decision-making. Despite its recognized importance, uncertainty is often underrepresented in the design and evaluation of clinical AI systems.
Here we report an editorial overview of a special issue dedicated to uncertainty modeling in medical AI, which gathers theoretical, methodological, and practical contributions addressing this critical gap. Across these works, authors reveal that fewer than 4% of studies address uncertainty explicitly, and propose alternative design principles—such as optimizing for clinical net benefit or embedding explainability with confidence estimates. Notable contributions include the RelAI system for real-time prediction reliability, empirical findings on how uncertainty communication shapes clinical interpretation, and benchmarks for out-of-distribution detection in tabular data. Furthermore, this issue highlights the use of causal reasoning and anomaly detection to enhance system robustness and accountability.
Together, these studies argue that representing, communicating, and operationalizing uncertainty are essential not only for clinical safety but also for building trust in AI-driven care. This special issue thus repositions uncertainty from a limitation to a foundational asset in the responsible deployment of ML in healthcare.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.