日本制药商协会非临床评价专家委员会人工智能病理学工作组报告:关于人工智能病理学的最新出版物概述。

IF 0.9 4区 医学 Q4 PATHOLOGY
Journal of Toxicologic Pathology Pub Date : 2025-07-01 Epub Date: 2025-03-11 DOI:10.1293/tox.2024-0100
Emi Tomikawa, Satoshi Sakai, Yoshinori Yamagiwa, Yumi Kangawa, Yusuke Kagawa, Yuki Kato, Kensuke Kojima, Akira Inomata, Izumi Matsumoto, Gen Sato, Mutsumi Suzuki
{"title":"日本制药商协会非临床评价专家委员会人工智能病理学工作组报告:关于人工智能病理学的最新出版物概述。","authors":"Emi Tomikawa, Satoshi Sakai, Yoshinori Yamagiwa, Yumi Kangawa, Yusuke Kagawa, Yuki Kato, Kensuke Kojima, Akira Inomata, Izumi Matsumoto, Gen Sato, Mutsumi Suzuki","doi":"10.1293/tox.2024-0100","DOIUrl":null,"url":null,"abstract":"<p><p>The use of artificial intelligence (AI) in non-clinical pathology is rapidly expanding. In this study, we conducted a literature survey of articles published after 2017 that used AI to analyze the histopathological images of experimental animals. We identified 44 articles that used AI for various purposes, including the detection of abnormal sites, determination and quantification of normal tissues, and classification of normal/abnormal images. AI systems or applications were either custom-built, commercially available, or a combination of both. Rats and mice were mainly used, and the liver was the most frequently analyzed organ. Our findings suggest that AI can be useful in non-clinical pathology and that collaboration between pharmaceutical companies or cooperation with IT experts can be a potential approach to further advance the utilization of AI in this field.</p>","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"38 3","pages":"191-198"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208865/pdf/","citationCount":"0","resultStr":"{\"title\":\"Report of the AI Pathology Task Force, Non-clinical Evaluation Expert Committee, Japan Pharmaceutical Manufacturers Association: an overview of recent publications about AI pathology.\",\"authors\":\"Emi Tomikawa, Satoshi Sakai, Yoshinori Yamagiwa, Yumi Kangawa, Yusuke Kagawa, Yuki Kato, Kensuke Kojima, Akira Inomata, Izumi Matsumoto, Gen Sato, Mutsumi Suzuki\",\"doi\":\"10.1293/tox.2024-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of artificial intelligence (AI) in non-clinical pathology is rapidly expanding. In this study, we conducted a literature survey of articles published after 2017 that used AI to analyze the histopathological images of experimental animals. We identified 44 articles that used AI for various purposes, including the detection of abnormal sites, determination and quantification of normal tissues, and classification of normal/abnormal images. AI systems or applications were either custom-built, commercially available, or a combination of both. Rats and mice were mainly used, and the liver was the most frequently analyzed organ. Our findings suggest that AI can be useful in non-clinical pathology and that collaboration between pharmaceutical companies or cooperation with IT experts can be a potential approach to further advance the utilization of AI in this field.</p>\",\"PeriodicalId\":17437,\"journal\":{\"name\":\"Journal of Toxicologic Pathology\",\"volume\":\"38 3\",\"pages\":\"191-198\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicologic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1293/tox.2024-0100\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2024-0100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)在非临床病理学中的应用正在迅速扩大。在本研究中,我们对2017年以后发表的使用人工智能分析实验动物组织病理图像的文章进行了文献调查。我们确定了44篇使用人工智能用于各种目的的文章,包括异常部位的检测,正常组织的测定和量化,以及正常/异常图像的分类。人工智能系统或应用程序要么是定制的,要么是商用的,要么是两者的结合。以大鼠和小鼠为主要研究对象,肝脏是最常被分析的器官。我们的研究结果表明,人工智能可以在非临床病理学中发挥作用,制药公司之间的合作或与IT专家的合作可以成为进一步推进人工智能在该领域应用的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Report of the AI Pathology Task Force, Non-clinical Evaluation Expert Committee, Japan Pharmaceutical Manufacturers Association: an overview of recent publications about AI pathology.

The use of artificial intelligence (AI) in non-clinical pathology is rapidly expanding. In this study, we conducted a literature survey of articles published after 2017 that used AI to analyze the histopathological images of experimental animals. We identified 44 articles that used AI for various purposes, including the detection of abnormal sites, determination and quantification of normal tissues, and classification of normal/abnormal images. AI systems or applications were either custom-built, commercially available, or a combination of both. Rats and mice were mainly used, and the liver was the most frequently analyzed organ. Our findings suggest that AI can be useful in non-clinical pathology and that collaboration between pharmaceutical companies or cooperation with IT experts can be a potential approach to further advance the utilization of AI in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Toxicologic Pathology
Journal of Toxicologic Pathology PATHOLOGY-TOXICOLOGY
CiteScore
2.10
自引率
16.70%
发文量
22
审稿时长
>12 weeks
期刊介绍: JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below. Administrative Opinions of Policymakers and Regulatory Agencies Adverse Events Carcinogenesis Data of A Predominantly Negative Nature Drug-Induced Hematologic Toxicity Embryological Pathology High Throughput Pathology Historical Data of Experimental Animals Immunohistochemical Analysis Molecular Pathology Nomenclature of Lesions Non-mammal Toxicity Study Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors Technology and Methodology Related to Toxicological Pathology Tumor Pathology; Neoplasia and Hyperplasia Ultrastructural Analysis Use of Animal Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信