{"title":"[2-氧戊二酸依赖的双加氧酶家族作为细胞氧和代谢传感的分子传感器]。","authors":"Koh Nakayama, Yoji Andrew Minamishima","doi":"10.1254/fpj.25021","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic condition is formed in our body when the oxygen demand exceeds the supply. Hypoxic response is triggered under such condition to maintain homeostasis. However, it had been unclear for a long time how cells sense changes of surrounding oxygen environment and activate hypoxic response. Studies of molecular machinery responding to hypoxia largely progressed in the mid 90's after the identification of Hypoxia-Inducible Factor, HIF. Then, the prolyl hydroxylase domain-containing protein (PHD)-HIF pathway was characterized as a central pathway for cells to monitor the decrease in oxygen concentration and maintain cellular function in hypoxia. PHD is recognized as one of the cellular oxygen sensors because it requires oxygen molecule for its enzymatic activity. Importantly, there is a large enzyme family named 2-oxoglutarate-dependent dioxygenase (2OGDD), which require O<sub>2</sub>, Fe<sup>2+</sup>, 2-oxoglutarate as co-factors like PHD. In this review, we will overview how 2OGDDs operate, and what are their roles in pathological situation. We also discuss possible direction of how we can establish drugs to target 2OGDDs.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 4","pages":"251-255"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[2-oxoglutarate-dependent dioxygenase family as a molecular sensor for cellular oxygen and metabolic sensing].\",\"authors\":\"Koh Nakayama, Yoji Andrew Minamishima\",\"doi\":\"10.1254/fpj.25021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic condition is formed in our body when the oxygen demand exceeds the supply. Hypoxic response is triggered under such condition to maintain homeostasis. However, it had been unclear for a long time how cells sense changes of surrounding oxygen environment and activate hypoxic response. Studies of molecular machinery responding to hypoxia largely progressed in the mid 90's after the identification of Hypoxia-Inducible Factor, HIF. Then, the prolyl hydroxylase domain-containing protein (PHD)-HIF pathway was characterized as a central pathway for cells to monitor the decrease in oxygen concentration and maintain cellular function in hypoxia. PHD is recognized as one of the cellular oxygen sensors because it requires oxygen molecule for its enzymatic activity. Importantly, there is a large enzyme family named 2-oxoglutarate-dependent dioxygenase (2OGDD), which require O<sub>2</sub>, Fe<sup>2+</sup>, 2-oxoglutarate as co-factors like PHD. In this review, we will overview how 2OGDDs operate, and what are their roles in pathological situation. We also discuss possible direction of how we can establish drugs to target 2OGDDs.</p>\",\"PeriodicalId\":12208,\"journal\":{\"name\":\"Folia Pharmacologica Japonica\",\"volume\":\"160 4\",\"pages\":\"251-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Pharmacologica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/fpj.25021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.25021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[2-oxoglutarate-dependent dioxygenase family as a molecular sensor for cellular oxygen and metabolic sensing].
Hypoxic condition is formed in our body when the oxygen demand exceeds the supply. Hypoxic response is triggered under such condition to maintain homeostasis. However, it had been unclear for a long time how cells sense changes of surrounding oxygen environment and activate hypoxic response. Studies of molecular machinery responding to hypoxia largely progressed in the mid 90's after the identification of Hypoxia-Inducible Factor, HIF. Then, the prolyl hydroxylase domain-containing protein (PHD)-HIF pathway was characterized as a central pathway for cells to monitor the decrease in oxygen concentration and maintain cellular function in hypoxia. PHD is recognized as one of the cellular oxygen sensors because it requires oxygen molecule for its enzymatic activity. Importantly, there is a large enzyme family named 2-oxoglutarate-dependent dioxygenase (2OGDD), which require O2, Fe2+, 2-oxoglutarate as co-factors like PHD. In this review, we will overview how 2OGDDs operate, and what are their roles in pathological situation. We also discuss possible direction of how we can establish drugs to target 2OGDDs.