{"title":"芦荟来源的细胞外囊泡样颗粒通过ROS-GSDMD/E信号通路引发胰腺癌的焦亡,从而抑制胰腺癌的进展。","authors":"Jieyu Shen, Tianfu Wei, Mingchen Li, Yuankuan Jiang, Jiahui Zhang, Yueyi Qi, Cai Chen, Xiaojie Li, Peng Huang, Jialin Qu","doi":"10.1186/s13020-025-01153-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pancreatic carcinoma (PC) remains one of the most aggressive malignancies that is often referred to as the \"king of cancers\" in clinic. Plant-derived extracellular vesicle-like particles (p-EVLP) has demonstrated broad-spectrum antitumor potential through their unique ability to effectively penetrate tumor microenvironments and deliver bioactive compounds. Aloe Vera is a tender and juicy plant with anti-tumor properties, while whether Aloe Vera-derived EVLP (AV-EVLP) can inhibit PC and what the underlying mechanism is still unclear.</p><p><strong>Methods: </strong>Two kinds of AV-EVLPs (EV-U and EV-P) were isolated from Aloe vera using comparative purification techniques. Their structure and composition characterization were performed using TEM, NTA and UHPLC-QTOFMS. In vitro experiments using Panc-1 cells included cytotoxicity, migration/invasion and cellular uptake assay were employed to investigate their tumor inhibition potential. In a Panc-1 xenograft mouse model, the therapeutic effects and systemic toxicity of EV-U were evaluated through tumor volume and weight, Ki67, TUNEL and histopathology examination. Mechanistic studies involved the levels of cellular ROS, IL-1β, IL-18 and the expression of caspase-1/3/7/9-GSDMD/E in both cell and tumor tissues were determined by ELISA, immunohistochemistry, Western blot and qRT-PCR.</p><p><strong>Results: </strong>EV-U and EV-P exhibited characteristic cup-shaped morphology with mean diameters 179.3 nm and 227.1 nm, respectively. At their respective IC<sub>50</sub> concentrations, both effectively inhibit cell migration and invasion and increase ROS, LDH, IL-18, and IL-1β levels in Panc-1 cells. Comparably, EV-U exhibited better activity due to their fewer impurities and more uniform dispersion. Further in vivo experiments supported the effectiveness of EV-U in reducing tumor volume and weight without causing toxicity or immunogenicity. Mechanistically, the activation of pyroptosis through the caspase-1/3/7/9-GSDMD/E pathways contributed to its efficacy.</p><p><strong>Conclusion: </strong>AV-EVLP significantly inhibit pancreatic cancer progression by triggering mitochondrial ROS release through the activation of caspase-1/3/7/9-GSDMD/E-mediated pyroptosis.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"101"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219699/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aloe vera-derived extracellular vesicle-like particles suppress pancreatic carcinoma progression through triggering pyroptosis via ROS-GSDMD/E signaling pathway.\",\"authors\":\"Jieyu Shen, Tianfu Wei, Mingchen Li, Yuankuan Jiang, Jiahui Zhang, Yueyi Qi, Cai Chen, Xiaojie Li, Peng Huang, Jialin Qu\",\"doi\":\"10.1186/s13020-025-01153-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pancreatic carcinoma (PC) remains one of the most aggressive malignancies that is often referred to as the \\\"king of cancers\\\" in clinic. Plant-derived extracellular vesicle-like particles (p-EVLP) has demonstrated broad-spectrum antitumor potential through their unique ability to effectively penetrate tumor microenvironments and deliver bioactive compounds. Aloe Vera is a tender and juicy plant with anti-tumor properties, while whether Aloe Vera-derived EVLP (AV-EVLP) can inhibit PC and what the underlying mechanism is still unclear.</p><p><strong>Methods: </strong>Two kinds of AV-EVLPs (EV-U and EV-P) were isolated from Aloe vera using comparative purification techniques. Their structure and composition characterization were performed using TEM, NTA and UHPLC-QTOFMS. In vitro experiments using Panc-1 cells included cytotoxicity, migration/invasion and cellular uptake assay were employed to investigate their tumor inhibition potential. In a Panc-1 xenograft mouse model, the therapeutic effects and systemic toxicity of EV-U were evaluated through tumor volume and weight, Ki67, TUNEL and histopathology examination. Mechanistic studies involved the levels of cellular ROS, IL-1β, IL-18 and the expression of caspase-1/3/7/9-GSDMD/E in both cell and tumor tissues were determined by ELISA, immunohistochemistry, Western blot and qRT-PCR.</p><p><strong>Results: </strong>EV-U and EV-P exhibited characteristic cup-shaped morphology with mean diameters 179.3 nm and 227.1 nm, respectively. At their respective IC<sub>50</sub> concentrations, both effectively inhibit cell migration and invasion and increase ROS, LDH, IL-18, and IL-1β levels in Panc-1 cells. Comparably, EV-U exhibited better activity due to their fewer impurities and more uniform dispersion. Further in vivo experiments supported the effectiveness of EV-U in reducing tumor volume and weight without causing toxicity or immunogenicity. Mechanistically, the activation of pyroptosis through the caspase-1/3/7/9-GSDMD/E pathways contributed to its efficacy.</p><p><strong>Conclusion: </strong>AV-EVLP significantly inhibit pancreatic cancer progression by triggering mitochondrial ROS release through the activation of caspase-1/3/7/9-GSDMD/E-mediated pyroptosis.</p>\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"20 1\",\"pages\":\"101\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219699/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-025-01153-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01153-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Aloe vera-derived extracellular vesicle-like particles suppress pancreatic carcinoma progression through triggering pyroptosis via ROS-GSDMD/E signaling pathway.
Background: Pancreatic carcinoma (PC) remains one of the most aggressive malignancies that is often referred to as the "king of cancers" in clinic. Plant-derived extracellular vesicle-like particles (p-EVLP) has demonstrated broad-spectrum antitumor potential through their unique ability to effectively penetrate tumor microenvironments and deliver bioactive compounds. Aloe Vera is a tender and juicy plant with anti-tumor properties, while whether Aloe Vera-derived EVLP (AV-EVLP) can inhibit PC and what the underlying mechanism is still unclear.
Methods: Two kinds of AV-EVLPs (EV-U and EV-P) were isolated from Aloe vera using comparative purification techniques. Their structure and composition characterization were performed using TEM, NTA and UHPLC-QTOFMS. In vitro experiments using Panc-1 cells included cytotoxicity, migration/invasion and cellular uptake assay were employed to investigate their tumor inhibition potential. In a Panc-1 xenograft mouse model, the therapeutic effects and systemic toxicity of EV-U were evaluated through tumor volume and weight, Ki67, TUNEL and histopathology examination. Mechanistic studies involved the levels of cellular ROS, IL-1β, IL-18 and the expression of caspase-1/3/7/9-GSDMD/E in both cell and tumor tissues were determined by ELISA, immunohistochemistry, Western blot and qRT-PCR.
Results: EV-U and EV-P exhibited characteristic cup-shaped morphology with mean diameters 179.3 nm and 227.1 nm, respectively. At their respective IC50 concentrations, both effectively inhibit cell migration and invasion and increase ROS, LDH, IL-18, and IL-1β levels in Panc-1 cells. Comparably, EV-U exhibited better activity due to their fewer impurities and more uniform dispersion. Further in vivo experiments supported the effectiveness of EV-U in reducing tumor volume and weight without causing toxicity or immunogenicity. Mechanistically, the activation of pyroptosis through the caspase-1/3/7/9-GSDMD/E pathways contributed to its efficacy.
Conclusion: AV-EVLP significantly inhibit pancreatic cancer progression by triggering mitochondrial ROS release through the activation of caspase-1/3/7/9-GSDMD/E-mediated pyroptosis.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.