Au(111)上羰基功能化离子液体润湿层结构的形成:如何控制官能团?

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Lukas Knörr, Hanna Bühlmeyer, Julien Steffen, Simon Trzeciak, Jonas Hauner, Dirk Zahn, Andreas Görling, Jörg Libuda
{"title":"Au(111)上羰基功能化离子液体润湿层结构的形成:如何控制官能团?","authors":"Lukas Knörr, Hanna Bühlmeyer, Julien Steffen, Simon Trzeciak, Jonas Hauner, Dirk Zahn, Andreas Görling, Jörg Libuda","doi":"10.1002/cphc.202500229","DOIUrl":null,"url":null,"abstract":"<p><p>Coating heterogeneous catalysts with ionic liquids (ILs), a strategy known as 'solid catalysts with ionic liquid layers', can fine-tune catalytic selectivity. Introducing functional groups into ILs enhances their interaction with reactants, but precise control over their positioning is crucial. The structural formation in the IL wetting layer of the carbonyl-functionalized IL [5-oxo-C<sub>6</sub>C<sub>1</sub>Im][NTf<sub>2</sub>] on Au(111) is investigated using infrared reflection absorption spectroscopy and scanning tunneling microscopy under ultrahigh vacuum conditions, supported by density functional theory and molecular dynamics simulations. At low temperatures (<130 K), the IL forms disordered islands, which coalesce into ordered films near ambient temperature. At low coverage, the IL adopts flat, space-demanding adsorption geometries. Upon forming a closed film, adsorption shifts to more compact configurations, with the carbonyl group tilting toward the vacuum while the ring remains surface-bound. Deposition at 300 K forms crystalline structures in the sub-monolayer regime, where the cation side chain can either stand upright or lie flat depending on the coverage. The IL remains thermally stable and desorbs completely at 500 K without decomposition. These findings highlight how IL coverage and deposition conditions tune functional group orientation at the catalyst interface, optimizing SCILL performance.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e2500229"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure Formation in the Wetting Layer of a Carbonyl-Functionalized Ionic Liquid on Au(111): How to Control the Functional Group?\",\"authors\":\"Lukas Knörr, Hanna Bühlmeyer, Julien Steffen, Simon Trzeciak, Jonas Hauner, Dirk Zahn, Andreas Görling, Jörg Libuda\",\"doi\":\"10.1002/cphc.202500229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coating heterogeneous catalysts with ionic liquids (ILs), a strategy known as 'solid catalysts with ionic liquid layers', can fine-tune catalytic selectivity. Introducing functional groups into ILs enhances their interaction with reactants, but precise control over their positioning is crucial. The structural formation in the IL wetting layer of the carbonyl-functionalized IL [5-oxo-C<sub>6</sub>C<sub>1</sub>Im][NTf<sub>2</sub>] on Au(111) is investigated using infrared reflection absorption spectroscopy and scanning tunneling microscopy under ultrahigh vacuum conditions, supported by density functional theory and molecular dynamics simulations. At low temperatures (<130 K), the IL forms disordered islands, which coalesce into ordered films near ambient temperature. At low coverage, the IL adopts flat, space-demanding adsorption geometries. Upon forming a closed film, adsorption shifts to more compact configurations, with the carbonyl group tilting toward the vacuum while the ring remains surface-bound. Deposition at 300 K forms crystalline structures in the sub-monolayer regime, where the cation side chain can either stand upright or lie flat depending on the coverage. The IL remains thermally stable and desorbs completely at 500 K without decomposition. These findings highlight how IL coverage and deposition conditions tune functional group orientation at the catalyst interface, optimizing SCILL performance.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e2500229\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500229\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500229","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在非均相催化剂上涂覆离子液体(ILs)是一种被称为“离子液体层固体催化剂”的策略,可以微调催化选择性。在il中引入官能团可以增强它们与反应物的相互作用,但精确控制它们的位置是至关重要的。在密度泛函理论和分子动力学模拟的支持下,利用红外反射吸收光谱和扫描隧道显微镜研究了Au(111)上羰基功能化IL [5-oxo-C6C1Im][NTf2]在超高真空条件下的IL润湿层结构形成。在低温下(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure Formation in the Wetting Layer of a Carbonyl-Functionalized Ionic Liquid on Au(111): How to Control the Functional Group?

Coating heterogeneous catalysts with ionic liquids (ILs), a strategy known as 'solid catalysts with ionic liquid layers', can fine-tune catalytic selectivity. Introducing functional groups into ILs enhances their interaction with reactants, but precise control over their positioning is crucial. The structural formation in the IL wetting layer of the carbonyl-functionalized IL [5-oxo-C6C1Im][NTf2] on Au(111) is investigated using infrared reflection absorption spectroscopy and scanning tunneling microscopy under ultrahigh vacuum conditions, supported by density functional theory and molecular dynamics simulations. At low temperatures (<130 K), the IL forms disordered islands, which coalesce into ordered films near ambient temperature. At low coverage, the IL adopts flat, space-demanding adsorption geometries. Upon forming a closed film, adsorption shifts to more compact configurations, with the carbonyl group tilting toward the vacuum while the ring remains surface-bound. Deposition at 300 K forms crystalline structures in the sub-monolayer regime, where the cation side chain can either stand upright or lie flat depending on the coverage. The IL remains thermally stable and desorbs completely at 500 K without decomposition. These findings highlight how IL coverage and deposition conditions tune functional group orientation at the catalyst interface, optimizing SCILL performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信