Herwig Weissinger, Moritz Urschbach, Luca Ferrari, Sascha Martens, Christian F. W. Becker
{"title":"光催化二烯醛收缩作为位点选择性等构泛素化的工具","authors":"Herwig Weissinger, Moritz Urschbach, Luca Ferrari, Sascha Martens, Christian F. W. Becker","doi":"10.1002/psc.70037","DOIUrl":null,"url":null,"abstract":"<p>Ubiquitylation is a highly conserved post-translational modification (PTM) in eukaryotes, which serves as a critical regulatory mechanism for protein homeostasis, cellular transport, signal transduction pathways, and numerous other functions. The biological function of ubiquitylation is dictated predominantly by the topology of its linkage. Deciphering ubiquitin's complex biochemistry necessitates novel synthetic methods that deliver well-defined, biosimilar ubiquitylation. To this end, a semisynthetic strategy relying on the recombinant expression of ubiquitin combined with chemoselective photocatalytic diselenide contraction (PDC) was established to enable site-selective biomimetic selenalysine-linked ubiquitylation. The modification of ubiquitin with a C-terminal selenol was fine-tuned to avoid hydrolysis. The conditions of the PDC reaction, such as solvent composition, phosphine concentration, and irradiation, were optimized for efficient ubiquitylation of a Tau F derived peptide. Furthermore, it was demonstrated that the selenalysine linkage undergoes efficient cleavage by deubiquitylating enzymes, comparable to the native isopeptide linkage. The presented method expands the toolbox of site-selective ubiquitylation techniques. It is tolerant to many functional groups and will help to further elucidate the complexities of ubiquitylation.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70037","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Diselenide Contraction as a Tool for Site-Selective Isosteric Ubiquitylation\",\"authors\":\"Herwig Weissinger, Moritz Urschbach, Luca Ferrari, Sascha Martens, Christian F. W. Becker\",\"doi\":\"10.1002/psc.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ubiquitylation is a highly conserved post-translational modification (PTM) in eukaryotes, which serves as a critical regulatory mechanism for protein homeostasis, cellular transport, signal transduction pathways, and numerous other functions. The biological function of ubiquitylation is dictated predominantly by the topology of its linkage. Deciphering ubiquitin's complex biochemistry necessitates novel synthetic methods that deliver well-defined, biosimilar ubiquitylation. To this end, a semisynthetic strategy relying on the recombinant expression of ubiquitin combined with chemoselective photocatalytic diselenide contraction (PDC) was established to enable site-selective biomimetic selenalysine-linked ubiquitylation. The modification of ubiquitin with a C-terminal selenol was fine-tuned to avoid hydrolysis. The conditions of the PDC reaction, such as solvent composition, phosphine concentration, and irradiation, were optimized for efficient ubiquitylation of a Tau F derived peptide. Furthermore, it was demonstrated that the selenalysine linkage undergoes efficient cleavage by deubiquitylating enzymes, comparable to the native isopeptide linkage. The presented method expands the toolbox of site-selective ubiquitylation techniques. It is tolerant to many functional groups and will help to further elucidate the complexities of ubiquitylation.</p>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":\"31 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.70037\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Photocatalytic Diselenide Contraction as a Tool for Site-Selective Isosteric Ubiquitylation
Ubiquitylation is a highly conserved post-translational modification (PTM) in eukaryotes, which serves as a critical regulatory mechanism for protein homeostasis, cellular transport, signal transduction pathways, and numerous other functions. The biological function of ubiquitylation is dictated predominantly by the topology of its linkage. Deciphering ubiquitin's complex biochemistry necessitates novel synthetic methods that deliver well-defined, biosimilar ubiquitylation. To this end, a semisynthetic strategy relying on the recombinant expression of ubiquitin combined with chemoselective photocatalytic diselenide contraction (PDC) was established to enable site-selective biomimetic selenalysine-linked ubiquitylation. The modification of ubiquitin with a C-terminal selenol was fine-tuned to avoid hydrolysis. The conditions of the PDC reaction, such as solvent composition, phosphine concentration, and irradiation, were optimized for efficient ubiquitylation of a Tau F derived peptide. Furthermore, it was demonstrated that the selenalysine linkage undergoes efficient cleavage by deubiquitylating enzymes, comparable to the native isopeptide linkage. The presented method expands the toolbox of site-selective ubiquitylation techniques. It is tolerant to many functional groups and will help to further elucidate the complexities of ubiquitylation.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.