基于战术单元优化的概率尖峰网络的5G边缘云连续体节能卸载任务

IF 0.5 Q4 TELECOMMUNICATIONS
N. Porchelvi, Elamparithi Pandian, P. Prabakaran, Samaya Pillai, R. Dhivya, U. Arun Kumar
{"title":"基于战术单元优化的概率尖峰网络的5G边缘云连续体节能卸载任务","authors":"N. Porchelvi,&nbsp;Elamparithi Pandian,&nbsp;P. Prabakaran,&nbsp;Samaya Pillai,&nbsp;R. Dhivya,&nbsp;U. Arun Kumar","doi":"10.1002/itl2.70073","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In order to maximize resource usage, minimize latency, and enhance energy efficiency in Mobile Edge Computing (MEC), task offloading is crucial in the 5G Edge-Cloud Continuum. Traditional methods suffer from high computational complexity and static decision-making, leading to inefficiencies. This work proposes a Probabilistic Spiking Neural Network with Tactical Unit Algorithm (PSNN-TUA) for adaptive, low-power task offloading. The system operates across three tiers: Device Layer, MEC Layer, and Cloud Layer, categorizing tasks as delay-sensitive, energy-sensitive, or latency-insensitive. Execution is modeled using Alpha-Beta-Gamma (ABG) path loss and OFDMA-based transmission. The PSNN-based decision model represents UEs, MEC servers, and cloud servers as spiking neurons, using spike probabilities to allocate offloading tasks according to network conditions and resource availability. The decision-making process based on membrane potentials facilitates appropriate work allocation and enhances computing efficiency. The TUA executes three operational stages namely Searchers Action followed by Executors Action then finishes with Assessors Combat Assessment to find optimal PSNN hyperparameters. The experimental data shows PSNN-TUA delivers superior performance compared to other methods by reaching 98.5% MEC availability with 12.3 ms latency and 0.75 J/task energy efficiency alongside 97.2% task completion and 0.9% packet loss and 1.3% failure rate which demonstrates its effectiveness for 5G MEC environments.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Offloading Task in the 5G Edge-Cloud Continuum Using Probabilistic Spiking Networks With Tactical Unit Optimization\",\"authors\":\"N. Porchelvi,&nbsp;Elamparithi Pandian,&nbsp;P. Prabakaran,&nbsp;Samaya Pillai,&nbsp;R. Dhivya,&nbsp;U. Arun Kumar\",\"doi\":\"10.1002/itl2.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In order to maximize resource usage, minimize latency, and enhance energy efficiency in Mobile Edge Computing (MEC), task offloading is crucial in the 5G Edge-Cloud Continuum. Traditional methods suffer from high computational complexity and static decision-making, leading to inefficiencies. This work proposes a Probabilistic Spiking Neural Network with Tactical Unit Algorithm (PSNN-TUA) for adaptive, low-power task offloading. The system operates across three tiers: Device Layer, MEC Layer, and Cloud Layer, categorizing tasks as delay-sensitive, energy-sensitive, or latency-insensitive. Execution is modeled using Alpha-Beta-Gamma (ABG) path loss and OFDMA-based transmission. The PSNN-based decision model represents UEs, MEC servers, and cloud servers as spiking neurons, using spike probabilities to allocate offloading tasks according to network conditions and resource availability. The decision-making process based on membrane potentials facilitates appropriate work allocation and enhances computing efficiency. The TUA executes three operational stages namely Searchers Action followed by Executors Action then finishes with Assessors Combat Assessment to find optimal PSNN hyperparameters. The experimental data shows PSNN-TUA delivers superior performance compared to other methods by reaching 98.5% MEC availability with 12.3 ms latency and 0.75 J/task energy efficiency alongside 97.2% task completion and 0.9% packet loss and 1.3% failure rate which demonstrates its effectiveness for 5G MEC environments.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了在移动边缘计算(MEC)中最大限度地利用资源、最小化延迟并提高能效,任务卸载在5G边缘云连续体中至关重要。传统方法存在计算复杂度高、决策静态等缺点,导致效率低下。本文提出了一种带有战术单元算法(PSNN-TUA)的概率尖峰神经网络,用于自适应、低功耗任务卸载。系统工作在三个层:设备层、MEC层和云层,将任务分为延迟敏感、能量敏感和延迟不敏感。执行使用Alpha-Beta-Gamma (ABG)路径损耗和基于ofdma的传输建模。基于psnn的决策模型将ue、MEC服务器和云服务器表示为峰值神经元,根据网络条件和资源可用性使用峰值概率分配卸载任务。基于膜电位的决策过程有利于合理分配工作,提高计算效率。TUA执行三个操作阶段,即搜索者操作,然后执行者操作,最后进行评估者战斗评估,以找到最优的PSNN超参数。实验数据表明,与其他方法相比,PSNN-TUA的MEC可用性达到98.5%,延迟为12.3 ms,任务能量效率为0.75 J/任务,任务完成率为97.2%,丢包率为0.9%,失败率为1.3%,证明了其在5G MEC环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Offloading Task in the 5G Edge-Cloud Continuum Using Probabilistic Spiking Networks With Tactical Unit Optimization

In order to maximize resource usage, minimize latency, and enhance energy efficiency in Mobile Edge Computing (MEC), task offloading is crucial in the 5G Edge-Cloud Continuum. Traditional methods suffer from high computational complexity and static decision-making, leading to inefficiencies. This work proposes a Probabilistic Spiking Neural Network with Tactical Unit Algorithm (PSNN-TUA) for adaptive, low-power task offloading. The system operates across three tiers: Device Layer, MEC Layer, and Cloud Layer, categorizing tasks as delay-sensitive, energy-sensitive, or latency-insensitive. Execution is modeled using Alpha-Beta-Gamma (ABG) path loss and OFDMA-based transmission. The PSNN-based decision model represents UEs, MEC servers, and cloud servers as spiking neurons, using spike probabilities to allocate offloading tasks according to network conditions and resource availability. The decision-making process based on membrane potentials facilitates appropriate work allocation and enhances computing efficiency. The TUA executes three operational stages namely Searchers Action followed by Executors Action then finishes with Assessors Combat Assessment to find optimal PSNN hyperparameters. The experimental data shows PSNN-TUA delivers superior performance compared to other methods by reaching 98.5% MEC availability with 12.3 ms latency and 0.75 J/task energy efficiency alongside 97.2% task completion and 0.9% packet loss and 1.3% failure rate which demonstrates its effectiveness for 5G MEC environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信