一种最优反向仿射最大化竞拍机制在移动众感知中的任务分配

IF 9.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jixian Zhang;Peng Chen;Xuelin Yang;Hao Wu;Weidong Li
{"title":"一种最优反向仿射最大化竞拍机制在移动众感知中的任务分配","authors":"Jixian Zhang;Peng Chen;Xuelin Yang;Hao Wu;Weidong Li","doi":"10.1109/TMC.2025.3549504","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing service (MCS) providers recruit users to complete data collection tasks with an incentive mechanism. How to maximize the utility of service providers has long been a popular topic in MCS research. Applying the existing reverse auction mechanism to an MCS may result in excessively high payments, thereby reducing the utility of the MCS provider. The affine maximizer auction (AMA) mechanism increases the revenue of service providers and meets dominant-strategy incentive-compatible (DSIC) characteristics. However, the AMA mechanism is a forward auction mechanism and cannot be applied to MCSs. Inspired by the AMA mechanism, this paper innovatively proposes a reverse affine maximizer auction (RAMA) mechanism to solve the task allocation problem of MCSs, effectively improving the MCS provider utility. Specifically, we construct a RAMA theoretical model and prove that the mechanism satisfies DSIC characteristics. For the discrete MCS task allocation problem, we use the reverse virtual valuation combinatorial auction (RVVCA) mechanism, a subclass of RAMA, to design a random mechanism RVVCA<inline-formula><tex-math>$^{t}$</tex-math></inline-formula> and prove that the RVVCA<inline-formula><tex-math>$^{t}$</tex-math></inline-formula> has a logarithmic approximate ratio. For the differentiable MCS task allocation problem, we use the deep learning transformer framework to design RAMANet, which can fit an exponential number of allocation solutions and output the optimal allocation and payment. We experimentally compare the algorithms of the RAMA family we propose, which use affine maximization, with existing state-of-the-art algorithms, demonstrating that the proposed algorithms significantly improve MCS provider utility.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 8","pages":"7475-7488"},"PeriodicalIF":9.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimal Reverse Affine Maximizer Auction Mechanism for Task Allocation in Mobile Crowdsensing\",\"authors\":\"Jixian Zhang;Peng Chen;Xuelin Yang;Hao Wu;Weidong Li\",\"doi\":\"10.1109/TMC.2025.3549504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile crowdsensing service (MCS) providers recruit users to complete data collection tasks with an incentive mechanism. How to maximize the utility of service providers has long been a popular topic in MCS research. Applying the existing reverse auction mechanism to an MCS may result in excessively high payments, thereby reducing the utility of the MCS provider. The affine maximizer auction (AMA) mechanism increases the revenue of service providers and meets dominant-strategy incentive-compatible (DSIC) characteristics. However, the AMA mechanism is a forward auction mechanism and cannot be applied to MCSs. Inspired by the AMA mechanism, this paper innovatively proposes a reverse affine maximizer auction (RAMA) mechanism to solve the task allocation problem of MCSs, effectively improving the MCS provider utility. Specifically, we construct a RAMA theoretical model and prove that the mechanism satisfies DSIC characteristics. For the discrete MCS task allocation problem, we use the reverse virtual valuation combinatorial auction (RVVCA) mechanism, a subclass of RAMA, to design a random mechanism RVVCA<inline-formula><tex-math>$^{t}$</tex-math></inline-formula> and prove that the RVVCA<inline-formula><tex-math>$^{t}$</tex-math></inline-formula> has a logarithmic approximate ratio. For the differentiable MCS task allocation problem, we use the deep learning transformer framework to design RAMANet, which can fit an exponential number of allocation solutions and output the optimal allocation and payment. We experimentally compare the algorithms of the RAMA family we propose, which use affine maximization, with existing state-of-the-art algorithms, demonstrating that the proposed algorithms significantly improve MCS provider utility.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 8\",\"pages\":\"7475-7488\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10918752/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10918752/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

移动众测服务(MCS)提供商通过激励机制招募用户完成数据收集任务。如何使服务提供者的效用最大化一直是管理服务研究的热门话题。将现有的反向拍卖机制应用于MCS可能会导致过高的支付,从而降低MCS提供商的效用。仿射最大化竞价(AMA)机制增加了服务提供商的收益,满足了优势策略激励相容(DSIC)的特征。但是,AMA机制是一种远期拍卖机制,不能应用于mcs。在AMA机制的启发下,本文创新性地提出了一种反向仿射最大化竞价(RAMA)机制来解决MCS的任务分配问题,有效地提高了MCS提供者的效用。具体而言,我们构建了RAMA理论模型,并证明了该机制满足DSIC特性。针对离散型MCS任务分配问题,利用RAMA的一个子集——反向虚拟估价组合拍卖(RVVCA)机制,设计了随机机制RVVCA$^{t}$,并证明了RVVCA$^{t}$具有对数近似比。对于可微MCS任务分配问题,我们使用深度学习转换器框架设计RAMANet,该RAMANet可以拟合指数数量的分配解,并输出最优分配和支付。我们通过实验将我们提出的使用仿射最大化的RAMA系列算法与现有的最先进算法进行了比较,证明了所提出的算法显着提高了MCS提供商的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Reverse Affine Maximizer Auction Mechanism for Task Allocation in Mobile Crowdsensing
Mobile crowdsensing service (MCS) providers recruit users to complete data collection tasks with an incentive mechanism. How to maximize the utility of service providers has long been a popular topic in MCS research. Applying the existing reverse auction mechanism to an MCS may result in excessively high payments, thereby reducing the utility of the MCS provider. The affine maximizer auction (AMA) mechanism increases the revenue of service providers and meets dominant-strategy incentive-compatible (DSIC) characteristics. However, the AMA mechanism is a forward auction mechanism and cannot be applied to MCSs. Inspired by the AMA mechanism, this paper innovatively proposes a reverse affine maximizer auction (RAMA) mechanism to solve the task allocation problem of MCSs, effectively improving the MCS provider utility. Specifically, we construct a RAMA theoretical model and prove that the mechanism satisfies DSIC characteristics. For the discrete MCS task allocation problem, we use the reverse virtual valuation combinatorial auction (RVVCA) mechanism, a subclass of RAMA, to design a random mechanism RVVCA$^{t}$ and prove that the RVVCA$^{t}$ has a logarithmic approximate ratio. For the differentiable MCS task allocation problem, we use the deep learning transformer framework to design RAMANet, which can fit an exponential number of allocation solutions and output the optimal allocation and payment. We experimentally compare the algorithms of the RAMA family we propose, which use affine maximization, with existing state-of-the-art algorithms, demonstrating that the proposed algorithms significantly improve MCS provider utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信