{"title":"一种人工智能辅助的一体化冠状动脉疾病诊断系统,该系统使用便携式心音传感器和机载可执行的轻量级模型","authors":"Haojie Zhang;Fuze Tian;Yang Tan;Lin Shen;Jingyu Liu;Jie Liu;Kun Qian;Yalei Han;Gong Su;Bin Hu;Björn W. Schuller;Yoshiharu Yamamoto","doi":"10.1109/TMC.2025.3547842","DOIUrl":null,"url":null,"abstract":"Heart sounds play a crucial role in assessing Coronary Artery Disease (CAD). The advancement of Artificial Intelligence (AI) technologies has given rise to Computer Audition (CA)-based methods for CAD detection. However, previous research has focused primarily on analyzing and modeling heart sound data, overlooking practical application scenarios. In this work, we design a pervasive heart sound collection device used for high-quality heart sound data acquisition. Moreover, we introduce an on-board executable lightweight network tailored for the designed portable device, referred to as TYKDModel. Further, heart sound data from 41 CAD patients and 22 non-CAD healthy controls are collected using the developed device. Experimental results show that the TYKDModel exhibits low-computational complexity, with 52.16 K parameters and 5.03 M Floating-Point Operations (FLOPs). When deployed on the board, it requires only 1.10 MB of Random Access Memory (RAM) and 236.27 KB of Read-Only Memory (ROM), and takes around 1.72 seconds to perform a classification. Despite the low computational and spatial complexity, the TYKDModel achieves a notable classification accuracy of 85.2%, specificity of 88.6%, and sensitivity of 82.8% on the board. These results indicate the promising potential of AI-assisted all-in-one integrated system for the diagnosis of heart sound-assisted CAD.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 8","pages":"7252-7266"},"PeriodicalIF":9.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AI-Assisted All-in-One Integrated Coronary Artery Disease Diagnosis System Using a Portable Heart Sound Sensor With an On-Board Executable Lightweight Model\",\"authors\":\"Haojie Zhang;Fuze Tian;Yang Tan;Lin Shen;Jingyu Liu;Jie Liu;Kun Qian;Yalei Han;Gong Su;Bin Hu;Björn W. Schuller;Yoshiharu Yamamoto\",\"doi\":\"10.1109/TMC.2025.3547842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart sounds play a crucial role in assessing Coronary Artery Disease (CAD). The advancement of Artificial Intelligence (AI) technologies has given rise to Computer Audition (CA)-based methods for CAD detection. However, previous research has focused primarily on analyzing and modeling heart sound data, overlooking practical application scenarios. In this work, we design a pervasive heart sound collection device used for high-quality heart sound data acquisition. Moreover, we introduce an on-board executable lightweight network tailored for the designed portable device, referred to as TYKDModel. Further, heart sound data from 41 CAD patients and 22 non-CAD healthy controls are collected using the developed device. Experimental results show that the TYKDModel exhibits low-computational complexity, with 52.16 K parameters and 5.03 M Floating-Point Operations (FLOPs). When deployed on the board, it requires only 1.10 MB of Random Access Memory (RAM) and 236.27 KB of Read-Only Memory (ROM), and takes around 1.72 seconds to perform a classification. Despite the low computational and spatial complexity, the TYKDModel achieves a notable classification accuracy of 85.2%, specificity of 88.6%, and sensitivity of 82.8% on the board. These results indicate the promising potential of AI-assisted all-in-one integrated system for the diagnosis of heart sound-assisted CAD.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 8\",\"pages\":\"7252-7266\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909628/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909628/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An AI-Assisted All-in-One Integrated Coronary Artery Disease Diagnosis System Using a Portable Heart Sound Sensor With an On-Board Executable Lightweight Model
Heart sounds play a crucial role in assessing Coronary Artery Disease (CAD). The advancement of Artificial Intelligence (AI) technologies has given rise to Computer Audition (CA)-based methods for CAD detection. However, previous research has focused primarily on analyzing and modeling heart sound data, overlooking practical application scenarios. In this work, we design a pervasive heart sound collection device used for high-quality heart sound data acquisition. Moreover, we introduce an on-board executable lightweight network tailored for the designed portable device, referred to as TYKDModel. Further, heart sound data from 41 CAD patients and 22 non-CAD healthy controls are collected using the developed device. Experimental results show that the TYKDModel exhibits low-computational complexity, with 52.16 K parameters and 5.03 M Floating-Point Operations (FLOPs). When deployed on the board, it requires only 1.10 MB of Random Access Memory (RAM) and 236.27 KB of Read-Only Memory (ROM), and takes around 1.72 seconds to perform a classification. Despite the low computational and spatial complexity, the TYKDModel achieves a notable classification accuracy of 85.2%, specificity of 88.6%, and sensitivity of 82.8% on the board. These results indicate the promising potential of AI-assisted all-in-one integrated system for the diagnosis of heart sound-assisted CAD.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.