个性化-泛化平衡身份识别中联邦人机协同的统一框架

IF 9.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qingyang Li;Yuanjiang Cao;Qianru Wang;Lina Yao;Zhiwen Yu;Jiangtao Cui
{"title":"个性化-泛化平衡身份识别中联邦人机协同的统一框架","authors":"Qingyang Li;Yuanjiang Cao;Qianru Wang;Lina Yao;Zhiwen Yu;Jiangtao Cui","doi":"10.1109/TMC.2025.3549925","DOIUrl":null,"url":null,"abstract":"As device-free identity recognition (IR) gains popularity and the demand for the Internet of Things (IoT) continues to grow, a new-era IR system featuring multiple distributed recognition devices and edge servers faces two main challenges: model adaptability and balancing the personalization of devices with the generalization of the system. This research introduces <italic>FedHMIR</i>, a federated framework designed to simultaneously address these challenges by harmonizing human-machine collaboration with personalization-generalization trade-offs. The proposed framework features a human-machine cooperative online internal update mechanism, leveraging reinforcement learning to maintain the adaptability of personalized local IR models. To counter overfitting and enhance the generalization of the overall IR system, an external update process incorporating a confidence index is introduced. Additionally, the framework employs asynchronous internal and external update procedures to effectively balance personalization and generalization between local and global models. Finally, extensive experiments on three diverse real-world datasets demonstrate the effectiveness and advantages of <italic>FedHMIR</i> compared to state-of-the-art baselines.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 8","pages":"7406-7422"},"PeriodicalIF":9.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedHMIR: Unified Framework for Federated Human-Machine Synergy in Personalization-Generalization Balancing Identity Recognition\",\"authors\":\"Qingyang Li;Yuanjiang Cao;Qianru Wang;Lina Yao;Zhiwen Yu;Jiangtao Cui\",\"doi\":\"10.1109/TMC.2025.3549925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As device-free identity recognition (IR) gains popularity and the demand for the Internet of Things (IoT) continues to grow, a new-era IR system featuring multiple distributed recognition devices and edge servers faces two main challenges: model adaptability and balancing the personalization of devices with the generalization of the system. This research introduces <italic>FedHMIR</i>, a federated framework designed to simultaneously address these challenges by harmonizing human-machine collaboration with personalization-generalization trade-offs. The proposed framework features a human-machine cooperative online internal update mechanism, leveraging reinforcement learning to maintain the adaptability of personalized local IR models. To counter overfitting and enhance the generalization of the overall IR system, an external update process incorporating a confidence index is introduced. Additionally, the framework employs asynchronous internal and external update procedures to effectively balance personalization and generalization between local and global models. Finally, extensive experiments on three diverse real-world datasets demonstrate the effectiveness and advantages of <italic>FedHMIR</i> compared to state-of-the-art baselines.\",\"PeriodicalId\":50389,\"journal\":{\"name\":\"IEEE Transactions on Mobile Computing\",\"volume\":\"24 8\",\"pages\":\"7406-7422\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10919106/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10919106/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着无设备身份识别(IR)的普及和物联网(IoT)需求的持续增长,具有多个分布式识别设备和边缘服务器的新时代身份识别系统面临着两个主要挑战:模型适应性和平衡设备的个性化与系统的通用性。本研究介绍了FedHMIR,这是一个联邦框架,旨在通过协调人机协作与个性化泛化权衡来同时解决这些挑战。提出的框架具有人机协作在线内部更新机制,利用强化学习来保持个性化局部IR模型的适应性。为了对抗过拟合并增强整个红外系统的泛化,引入了包含置信度指数的外部更新过程。此外,该框架采用异步内部和外部更新过程来有效地平衡局部和全局模型之间的个性化和泛化。最后,在三个不同的真实世界数据集上进行的大量实验表明,与最先进的基线相比,FedHMIR的有效性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FedHMIR: Unified Framework for Federated Human-Machine Synergy in Personalization-Generalization Balancing Identity Recognition
As device-free identity recognition (IR) gains popularity and the demand for the Internet of Things (IoT) continues to grow, a new-era IR system featuring multiple distributed recognition devices and edge servers faces two main challenges: model adaptability and balancing the personalization of devices with the generalization of the system. This research introduces FedHMIR, a federated framework designed to simultaneously address these challenges by harmonizing human-machine collaboration with personalization-generalization trade-offs. The proposed framework features a human-machine cooperative online internal update mechanism, leveraging reinforcement learning to maintain the adaptability of personalized local IR models. To counter overfitting and enhance the generalization of the overall IR system, an external update process incorporating a confidence index is introduced. Additionally, the framework employs asynchronous internal and external update procedures to effectively balance personalization and generalization between local and global models. Finally, extensive experiments on three diverse real-world datasets demonstrate the effectiveness and advantages of FedHMIR compared to state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信