功能交付网络:优化无服务器计算的时空执行协调器

IF 3.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Joel R. Corporan;Arshdeep Bahga;Vijay K. Madisetti
{"title":"功能交付网络:优化无服务器计算的时空执行协调器","authors":"Joel R. Corporan;Arshdeep Bahga;Vijay K. Madisetti","doi":"10.1109/ACCESS.2025.3583721","DOIUrl":null,"url":null,"abstract":"We present Function Delivery Network (FDN), a novel spatial-temporal execution orchestrator designed to address key limitations in current serverless computing models. The FDN introduces several innovations, including a multi-tenant serverless model, a secure and reusable functional context, and distributed shared memory, to optimize resource allocation and improve performance in high-concurrency and globally distributed scenarios. We implement the FDN on a major cloud platform and evaluate its performance against traditional Function-as-a-Service (FaaS) execution using a variety of benchmark functions. Our results demonstrate significant improvements in resource utilization, execution time, and request completion rates. The FDN reduces function instance allocation by up to 97.82%, improves median response times by 45.45%, and maintains higher request completion rates at high concurrency levels compared to native FaaS execution. The FDN’s adaptive execution window mechanism allows for fine-tuned optimization based on function characteristics and workload patterns. This approach effectively addresses challenges such as cold starts, inefficient resource allocation, and scalability limitations in current serverless platforms. By providing a more efficient and scalable model for serverless computing, the FDN enables more cost-effective and performant cloud-native applications, particularly in scenarios involving high concurrency and global distribution.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"112255-112270"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053862","citationCount":"0","resultStr":"{\"title\":\"Function Delivery Network: A Spatial-Temporal Execution Orchestrator for Optimizing Serverless Computing\",\"authors\":\"Joel R. Corporan;Arshdeep Bahga;Vijay K. Madisetti\",\"doi\":\"10.1109/ACCESS.2025.3583721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Function Delivery Network (FDN), a novel spatial-temporal execution orchestrator designed to address key limitations in current serverless computing models. The FDN introduces several innovations, including a multi-tenant serverless model, a secure and reusable functional context, and distributed shared memory, to optimize resource allocation and improve performance in high-concurrency and globally distributed scenarios. We implement the FDN on a major cloud platform and evaluate its performance against traditional Function-as-a-Service (FaaS) execution using a variety of benchmark functions. Our results demonstrate significant improvements in resource utilization, execution time, and request completion rates. The FDN reduces function instance allocation by up to 97.82%, improves median response times by 45.45%, and maintains higher request completion rates at high concurrency levels compared to native FaaS execution. The FDN’s adaptive execution window mechanism allows for fine-tuned optimization based on function characteristics and workload patterns. This approach effectively addresses challenges such as cold starts, inefficient resource allocation, and scalability limitations in current serverless platforms. By providing a more efficient and scalable model for serverless computing, the FDN enables more cost-effective and performant cloud-native applications, particularly in scenarios involving high concurrency and global distribution.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"112255-112270\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053862\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11053862/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11053862/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出功能交付网络(FDN),一种新的时空执行编排器,旨在解决当前无服务器计算模型中的关键限制。FDN引入了一些创新,包括多租户无服务器模型、安全和可重用的功能上下文以及分布式共享内存,以优化资源分配并提高高并发性和全局分布式场景下的性能。我们在一个主要的云平台上实现了FDN,并使用各种基准函数对传统的功能即服务(FaaS)执行进行了性能评估。我们的结果表明,在资源利用率、执行时间和请求完成率方面有了显著的改进。与本地FaaS执行相比,FDN将功能实例分配减少了97.82%,将中位数响应时间提高了45.45%,并在高并发级别上保持了更高的请求完成率。FDN的自适应执行窗口机制允许基于功能特征和工作负载模式进行微调优化。这种方法有效地解决了当前无服务器平台中的冷启动、低效的资源分配和可伸缩性限制等挑战。通过为无服务器计算提供更高效和可扩展的模型,FDN支持更具成本效益和性能的云原生应用程序,特别是在涉及高并发性和全球分布的场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function Delivery Network: A Spatial-Temporal Execution Orchestrator for Optimizing Serverless Computing
We present Function Delivery Network (FDN), a novel spatial-temporal execution orchestrator designed to address key limitations in current serverless computing models. The FDN introduces several innovations, including a multi-tenant serverless model, a secure and reusable functional context, and distributed shared memory, to optimize resource allocation and improve performance in high-concurrency and globally distributed scenarios. We implement the FDN on a major cloud platform and evaluate its performance against traditional Function-as-a-Service (FaaS) execution using a variety of benchmark functions. Our results demonstrate significant improvements in resource utilization, execution time, and request completion rates. The FDN reduces function instance allocation by up to 97.82%, improves median response times by 45.45%, and maintains higher request completion rates at high concurrency levels compared to native FaaS execution. The FDN’s adaptive execution window mechanism allows for fine-tuned optimization based on function characteristics and workload patterns. This approach effectively addresses challenges such as cold starts, inefficient resource allocation, and scalability limitations in current serverless platforms. By providing a more efficient and scalable model for serverless computing, the FDN enables more cost-effective and performant cloud-native applications, particularly in scenarios involving high concurrency and global distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信