{"title":"具有更高线路负载性的革命性非常规输电线路设计","authors":"Mushfiqul Abedin Khan;Mona Ghassemi","doi":"10.1109/ACCESS.2025.3583915","DOIUrl":null,"url":null,"abstract":"Traditionally, overhead AC transmission lines have been used to transfer electrical power from the generation to the distribution sector. The capacitance and inductance of these lines are significantly influenced by the size and arrangement of the subconductors in each phase, which in turn affects the transmission capacity. Conventional transmission lines typically employ a circular symmetry for the arrangement of subconductors in each phase. However, by altering the number and placement of these subconductors, the power transfer capacity of the lines can be significantly increased. Unconventional transmission lines leverage this principle by deviating from the traditional circular symmetry, resulting in a lower characteristic or surge impedance (<inline-formula> <tex-math>$Z_{c}$ </tex-math></inline-formula>), which enhances the surge impedance loading (SIL). This paper introduces new designs for unconventional transmission lines, optimized under strict criteria to minimize corona discharge effects while maintaining a narrow corridor width (CW). Compared to a conventional transmission line from the literature—with a SIL of 996 MW and a line width of 24.6 meters (yielding a power density of 40.5 MW/m)—our optimally designed conventional HSIL line achieves a SIL of 1351 MW (a 36% increase) and a line width of only 8.4 meters (a 66% reduction), resulting in a power density of 160.8 MW/m (a 297% increase). Even greater improvements are observed with unconventional HSIL designs, reaching a SIL of 1592 MW—representing a 60% increase over the conventional line and an 18% improvement over the best conventional HSIL design. These findings offer promising prospects for the future of modern transmission networks.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"111866-111878"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053762","citationCount":"0","resultStr":"{\"title\":\"Revolutionary Unconventional Transmission Line Designs With Higher Line Loadability\",\"authors\":\"Mushfiqul Abedin Khan;Mona Ghassemi\",\"doi\":\"10.1109/ACCESS.2025.3583915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally, overhead AC transmission lines have been used to transfer electrical power from the generation to the distribution sector. The capacitance and inductance of these lines are significantly influenced by the size and arrangement of the subconductors in each phase, which in turn affects the transmission capacity. Conventional transmission lines typically employ a circular symmetry for the arrangement of subconductors in each phase. However, by altering the number and placement of these subconductors, the power transfer capacity of the lines can be significantly increased. Unconventional transmission lines leverage this principle by deviating from the traditional circular symmetry, resulting in a lower characteristic or surge impedance (<inline-formula> <tex-math>$Z_{c}$ </tex-math></inline-formula>), which enhances the surge impedance loading (SIL). This paper introduces new designs for unconventional transmission lines, optimized under strict criteria to minimize corona discharge effects while maintaining a narrow corridor width (CW). Compared to a conventional transmission line from the literature—with a SIL of 996 MW and a line width of 24.6 meters (yielding a power density of 40.5 MW/m)—our optimally designed conventional HSIL line achieves a SIL of 1351 MW (a 36% increase) and a line width of only 8.4 meters (a 66% reduction), resulting in a power density of 160.8 MW/m (a 297% increase). Even greater improvements are observed with unconventional HSIL designs, reaching a SIL of 1592 MW—representing a 60% increase over the conventional line and an 18% improvement over the best conventional HSIL design. These findings offer promising prospects for the future of modern transmission networks.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"111866-111878\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11053762\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11053762/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11053762/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Revolutionary Unconventional Transmission Line Designs With Higher Line Loadability
Traditionally, overhead AC transmission lines have been used to transfer electrical power from the generation to the distribution sector. The capacitance and inductance of these lines are significantly influenced by the size and arrangement of the subconductors in each phase, which in turn affects the transmission capacity. Conventional transmission lines typically employ a circular symmetry for the arrangement of subconductors in each phase. However, by altering the number and placement of these subconductors, the power transfer capacity of the lines can be significantly increased. Unconventional transmission lines leverage this principle by deviating from the traditional circular symmetry, resulting in a lower characteristic or surge impedance ($Z_{c}$ ), which enhances the surge impedance loading (SIL). This paper introduces new designs for unconventional transmission lines, optimized under strict criteria to minimize corona discharge effects while maintaining a narrow corridor width (CW). Compared to a conventional transmission line from the literature—with a SIL of 996 MW and a line width of 24.6 meters (yielding a power density of 40.5 MW/m)—our optimally designed conventional HSIL line achieves a SIL of 1351 MW (a 36% increase) and a line width of only 8.4 meters (a 66% reduction), resulting in a power density of 160.8 MW/m (a 297% increase). Even greater improvements are observed with unconventional HSIL designs, reaching a SIL of 1592 MW—representing a 60% increase over the conventional line and an 18% improvement over the best conventional HSIL design. These findings offer promising prospects for the future of modern transmission networks.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.