经腹超声图像中前列腺体积的自动估计

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Tiziano Natali , Liza M. Kurucz , Matteo Fusaglia , Laura S. Mertens , Theo J.M. Ruers , Pim J. van Leeuwen , Behdad Dashtbozorg
{"title":"经腹超声图像中前列腺体积的自动估计","authors":"Tiziano Natali ,&nbsp;Liza M. Kurucz ,&nbsp;Matteo Fusaglia ,&nbsp;Laura S. Mertens ,&nbsp;Theo J.M. Ruers ,&nbsp;Pim J. van Leeuwen ,&nbsp;Behdad Dashtbozorg","doi":"10.1016/j.ejrad.2025.112274","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Prostate cancer is a major health concern requiring accurate and accessible methods for early detection and risk stratification. Prostate volume (PV) is a key parameter in multivariate risk assessment, traditionally measured using transrectal ultrasound (TRUS). While TRUS provides precise measurements, its invasive nature affects patient comfort. Transabdominal ultrasound (TAUS) offers a non-invasive alternative but is limited by lower image quality and operator dependence. This study presents a deep-learning-based framework for automatic PV estimation using TAUS, aiming to improve non-invasive prostate cancer risk stratification.</div></div><div><h3>Methods</h3><div>A dataset of TAUS videos from 100 patients (median age 67, 95-percentile range 55–81.2) was curated, with expert-delineated prostate boundaries and diameter calculations as ground truth. The framework integrates deep-learning models for prostate segmentation in both axial and sagittal planes, automatic diameter estimation, and PV calculation. Segmentation performance was evaluated using Dice correlation coefficient (%) and Hausdorff distance (mm), while volume estimation accuracy was assessed through volumetric error (mL).</div></div><div><h3>Results</h3><div>The axial model outperformed the sagittal model, achieving a Dice score of 0.76 ± 0.16 versus 0.68 ± 0.21, a Dice-MidPlane of 0.91 ± 0.06 versus 0.83.</div><div>± 0.10, and a Hausdorff distance of 6.21 ± 4.33 mm versus 7.93 ± 4.27 mm. The framework estimated PV with a mean volumetric error of −2.1 mL (95 % limits of agreement: −16.9 to 21.1 mL), resulting in a relative error smaller than 25 %.</div></div><div><h3>Conclusion</h3><div>These findings highlight the potential of deep learning for accurate, non-invasive PV estimation, supporting improved prostate cancer risk assessment.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"191 ","pages":"Article 112274"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic prostate volume estimation in transabdominal ultrasound images\",\"authors\":\"Tiziano Natali ,&nbsp;Liza M. Kurucz ,&nbsp;Matteo Fusaglia ,&nbsp;Laura S. Mertens ,&nbsp;Theo J.M. Ruers ,&nbsp;Pim J. van Leeuwen ,&nbsp;Behdad Dashtbozorg\",\"doi\":\"10.1016/j.ejrad.2025.112274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>Prostate cancer is a major health concern requiring accurate and accessible methods for early detection and risk stratification. Prostate volume (PV) is a key parameter in multivariate risk assessment, traditionally measured using transrectal ultrasound (TRUS). While TRUS provides precise measurements, its invasive nature affects patient comfort. Transabdominal ultrasound (TAUS) offers a non-invasive alternative but is limited by lower image quality and operator dependence. This study presents a deep-learning-based framework for automatic PV estimation using TAUS, aiming to improve non-invasive prostate cancer risk stratification.</div></div><div><h3>Methods</h3><div>A dataset of TAUS videos from 100 patients (median age 67, 95-percentile range 55–81.2) was curated, with expert-delineated prostate boundaries and diameter calculations as ground truth. The framework integrates deep-learning models for prostate segmentation in both axial and sagittal planes, automatic diameter estimation, and PV calculation. Segmentation performance was evaluated using Dice correlation coefficient (%) and Hausdorff distance (mm), while volume estimation accuracy was assessed through volumetric error (mL).</div></div><div><h3>Results</h3><div>The axial model outperformed the sagittal model, achieving a Dice score of 0.76 ± 0.16 versus 0.68 ± 0.21, a Dice-MidPlane of 0.91 ± 0.06 versus 0.83.</div><div>± 0.10, and a Hausdorff distance of 6.21 ± 4.33 mm versus 7.93 ± 4.27 mm. The framework estimated PV with a mean volumetric error of −2.1 mL (95 % limits of agreement: −16.9 to 21.1 mL), resulting in a relative error smaller than 25 %.</div></div><div><h3>Conclusion</h3><div>These findings highlight the potential of deep learning for accurate, non-invasive PV estimation, supporting improved prostate cancer risk assessment.</div></div>\",\"PeriodicalId\":12063,\"journal\":{\"name\":\"European Journal of Radiology\",\"volume\":\"191 \",\"pages\":\"Article 112274\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0720048X25003602\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25003602","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌是一个主要的健康问题,需要准确和容易获得的方法进行早期检测和风险分层。前列腺体积(PV)是多因素风险评估的关键参数,传统上使用经直肠超声(TRUS)测量。虽然TRUS提供了精确的测量,但它的侵入性影响了患者的舒适度。经腹超声(TAUS)提供了一种非侵入性的替代方法,但由于图像质量较低和对操作人员的依赖性而受到限制。本研究提出了一种基于深度学习的基于TAUS的自动PV估计框架,旨在改善非侵入性前列腺癌风险分层。方法收集100例患者(中位年龄67岁,95%百分位范围55-81.2)的TAUS视频数据集,以专家划定的前列腺边界和直径计算为基础。该框架集成了深度学习模型,用于轴向和矢状面前列腺分割、自动直径估计和PV计算。使用Dice相关系数(%)和Hausdorff距离(mm)评估分割性能,通过体积误差(mL)评估体积估计精度。结果轴向模型优于矢状模型,Dice评分为0.76±0.16比0.68±0.21,Dice- midplane评分为0.91±0.06比0.83。±0.10,Hausdorff距离分别为6.21±4.33 mm和7.93±4.27 mm。该框架估计PV的平均体积误差为- 2.1 mL(95%的一致性限制:- 16.9至21.1 mL),导致相对误差小于25%。这些发现突出了深度学习在准确、无创PV估计方面的潜力,支持改进的前列腺癌风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic prostate volume estimation in transabdominal ultrasound images

Introduction

Prostate cancer is a major health concern requiring accurate and accessible methods for early detection and risk stratification. Prostate volume (PV) is a key parameter in multivariate risk assessment, traditionally measured using transrectal ultrasound (TRUS). While TRUS provides precise measurements, its invasive nature affects patient comfort. Transabdominal ultrasound (TAUS) offers a non-invasive alternative but is limited by lower image quality and operator dependence. This study presents a deep-learning-based framework for automatic PV estimation using TAUS, aiming to improve non-invasive prostate cancer risk stratification.

Methods

A dataset of TAUS videos from 100 patients (median age 67, 95-percentile range 55–81.2) was curated, with expert-delineated prostate boundaries and diameter calculations as ground truth. The framework integrates deep-learning models for prostate segmentation in both axial and sagittal planes, automatic diameter estimation, and PV calculation. Segmentation performance was evaluated using Dice correlation coefficient (%) and Hausdorff distance (mm), while volume estimation accuracy was assessed through volumetric error (mL).

Results

The axial model outperformed the sagittal model, achieving a Dice score of 0.76 ± 0.16 versus 0.68 ± 0.21, a Dice-MidPlane of 0.91 ± 0.06 versus 0.83.
± 0.10, and a Hausdorff distance of 6.21 ± 4.33 mm versus 7.93 ± 4.27 mm. The framework estimated PV with a mean volumetric error of −2.1 mL (95 % limits of agreement: −16.9 to 21.1 mL), resulting in a relative error smaller than 25 %.

Conclusion

These findings highlight the potential of deep learning for accurate, non-invasive PV estimation, supporting improved prostate cancer risk assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信