光子量子忆阻器的量子电路模型及其优化

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Guangzhen Dai , Wei Li , Shijin Zhong , Sihao Yang , Daohua Wu
{"title":"光子量子忆阻器的量子电路模型及其优化","authors":"Guangzhen Dai ,&nbsp;Wei Li ,&nbsp;Shijin Zhong ,&nbsp;Sihao Yang ,&nbsp;Daohua Wu","doi":"10.1016/j.physleta.2025.130774","DOIUrl":null,"url":null,"abstract":"<div><div>The photonic quantum memristor (PQM) can be realized through a dynamic feedback mechanism of tunable beam splitters, where the reflectivity is dynamically adjusted based on measurement outcomes of outgoing light beams, thereby achieving memristive quantum behavior in non-Markovian quantum environments. In this work, based on the Mach-Zehnder Interferometer (MZI) architecture, we propose a novel PQM scheme by redefining the phase shift as the state variable. Secondly, by establishing the correspondence between the photon number expectation value and the quantum bit, we designed a quantum circuit model of the PQM and conduct numerical simulation verification of this memristive quantum system. Finally, by improving the structure of the quantum circuit, we propose a memristive quantum circuit with adjustable frequency and amplitude.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"555 ","pages":"Article 130774"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum circuit model for photonic quantum memristors and its optimization\",\"authors\":\"Guangzhen Dai ,&nbsp;Wei Li ,&nbsp;Shijin Zhong ,&nbsp;Sihao Yang ,&nbsp;Daohua Wu\",\"doi\":\"10.1016/j.physleta.2025.130774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The photonic quantum memristor (PQM) can be realized through a dynamic feedback mechanism of tunable beam splitters, where the reflectivity is dynamically adjusted based on measurement outcomes of outgoing light beams, thereby achieving memristive quantum behavior in non-Markovian quantum environments. In this work, based on the Mach-Zehnder Interferometer (MZI) architecture, we propose a novel PQM scheme by redefining the phase shift as the state variable. Secondly, by establishing the correspondence between the photon number expectation value and the quantum bit, we designed a quantum circuit model of the PQM and conduct numerical simulation verification of this memristive quantum system. Finally, by improving the structure of the quantum circuit, we propose a memristive quantum circuit with adjustable frequency and amplitude.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"555 \",\"pages\":\"Article 130774\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125005547\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125005547","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光子量子忆阻器(PQM)可以通过可调分束器的动态反馈机制实现,根据出射光束的测量结果动态调整反射率,从而实现非马尔可夫量子环境下的忆阻量子行为。本文基于Mach-Zehnder干涉仪(MZI)结构,提出了一种新的PQM方案,将相移重新定义为状态变量。其次,通过建立光子数期望值与量子比特的对应关系,设计了PQM的量子电路模型,并对该忆阻量子系统进行了数值仿真验证。最后,通过改进量子电路的结构,我们提出了一种频率和幅度可调的忆阻量子电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum circuit model for photonic quantum memristors and its optimization
The photonic quantum memristor (PQM) can be realized through a dynamic feedback mechanism of tunable beam splitters, where the reflectivity is dynamically adjusted based on measurement outcomes of outgoing light beams, thereby achieving memristive quantum behavior in non-Markovian quantum environments. In this work, based on the Mach-Zehnder Interferometer (MZI) architecture, we propose a novel PQM scheme by redefining the phase shift as the state variable. Secondly, by establishing the correspondence between the photon number expectation value and the quantum bit, we designed a quantum circuit model of the PQM and conduct numerical simulation verification of this memristive quantum system. Finally, by improving the structure of the quantum circuit, we propose a memristive quantum circuit with adjustable frequency and amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信