Subhayan De , Reza Farzad , Patrick T. Brewick , Erik A. Johnson , Steven F. Wojtkiewicz
{"title":"贝叶斯模型选择的边际似然水平自适应估计","authors":"Subhayan De , Reza Farzad , Patrick T. Brewick , Erik A. Johnson , Steven F. Wojtkiewicz","doi":"10.1016/j.cma.2025.118141","DOIUrl":null,"url":null,"abstract":"<div><div>In computational mechanics, multiple models are often present to describe a physical system. While Bayesian model selection is a helpful tool to compare these models using measurement data, it requires the computationally expensive estimation of a multidimensional integral — known as the marginal likelihood or as the model evidence (<em>i.e.</em>, the probability of observing the measured data given the model) — over the multidimensional parameter domain. This study presents efficient approaches for estimating this marginal likelihood by transforming it into a one-dimensional integral that is subsequently evaluated using a quadrature rule at multiple adaptively-chosen iso-likelihood contour levels. Three different algorithms are proposed to estimate the probability mass at each adapted likelihood level using samples from importance sampling, stratified sampling, and Markov chain Monte Carlo (MCMC) sampling, respectively. The proposed approach is illustrated — with comparisons to Monte Carlo, nested, and MultiNest sampling — through four numerical examples. The first, an elementary example, shows the accuracies of the three proposed algorithms when the exact value of the marginal likelihood is known. The second example uses an 11-story building subjected to an earthquake excitation with an uncertain hysteretic base isolation layer with two models to describe the isolation layer behavior. The third example considers flow past a cylinder when the inlet velocity is uncertain. Based on the these examples, the method with stratified sampling is by far the most accurate and efficient method for complex model behavior in low dimension, particularly considering that this method can be implemented to exploit parallel computation. In the fourth example, the proposed approach is applied to heat conduction in an inhomogeneous plate with uncertain thermal conductivity modeled through a 100 degree-of-freedom Karhunen–Loève expansion. The results indicate that MultiNest cannot efficiently handle the high-dimensional parameter space, whereas the proposed MCMC-based method more accurately and efficiently explores the parameter space. The marginal likelihood results for the last three examples — when compared with the results obtained from standard Monte Carlo sampling, nested sampling, and MultiNest algorithm — show good agreement.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"445 ","pages":"Article 118141"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Likelihood level adapted estimation of marginal likelihood for Bayesian model selection\",\"authors\":\"Subhayan De , Reza Farzad , Patrick T. Brewick , Erik A. Johnson , Steven F. Wojtkiewicz\",\"doi\":\"10.1016/j.cma.2025.118141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In computational mechanics, multiple models are often present to describe a physical system. While Bayesian model selection is a helpful tool to compare these models using measurement data, it requires the computationally expensive estimation of a multidimensional integral — known as the marginal likelihood or as the model evidence (<em>i.e.</em>, the probability of observing the measured data given the model) — over the multidimensional parameter domain. This study presents efficient approaches for estimating this marginal likelihood by transforming it into a one-dimensional integral that is subsequently evaluated using a quadrature rule at multiple adaptively-chosen iso-likelihood contour levels. Three different algorithms are proposed to estimate the probability mass at each adapted likelihood level using samples from importance sampling, stratified sampling, and Markov chain Monte Carlo (MCMC) sampling, respectively. The proposed approach is illustrated — with comparisons to Monte Carlo, nested, and MultiNest sampling — through four numerical examples. The first, an elementary example, shows the accuracies of the three proposed algorithms when the exact value of the marginal likelihood is known. The second example uses an 11-story building subjected to an earthquake excitation with an uncertain hysteretic base isolation layer with two models to describe the isolation layer behavior. The third example considers flow past a cylinder when the inlet velocity is uncertain. Based on the these examples, the method with stratified sampling is by far the most accurate and efficient method for complex model behavior in low dimension, particularly considering that this method can be implemented to exploit parallel computation. In the fourth example, the proposed approach is applied to heat conduction in an inhomogeneous plate with uncertain thermal conductivity modeled through a 100 degree-of-freedom Karhunen–Loève expansion. The results indicate that MultiNest cannot efficiently handle the high-dimensional parameter space, whereas the proposed MCMC-based method more accurately and efficiently explores the parameter space. The marginal likelihood results for the last three examples — when compared with the results obtained from standard Monte Carlo sampling, nested sampling, and MultiNest algorithm — show good agreement.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"445 \",\"pages\":\"Article 118141\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004578252500413X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500413X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Likelihood level adapted estimation of marginal likelihood for Bayesian model selection
In computational mechanics, multiple models are often present to describe a physical system. While Bayesian model selection is a helpful tool to compare these models using measurement data, it requires the computationally expensive estimation of a multidimensional integral — known as the marginal likelihood or as the model evidence (i.e., the probability of observing the measured data given the model) — over the multidimensional parameter domain. This study presents efficient approaches for estimating this marginal likelihood by transforming it into a one-dimensional integral that is subsequently evaluated using a quadrature rule at multiple adaptively-chosen iso-likelihood contour levels. Three different algorithms are proposed to estimate the probability mass at each adapted likelihood level using samples from importance sampling, stratified sampling, and Markov chain Monte Carlo (MCMC) sampling, respectively. The proposed approach is illustrated — with comparisons to Monte Carlo, nested, and MultiNest sampling — through four numerical examples. The first, an elementary example, shows the accuracies of the three proposed algorithms when the exact value of the marginal likelihood is known. The second example uses an 11-story building subjected to an earthquake excitation with an uncertain hysteretic base isolation layer with two models to describe the isolation layer behavior. The third example considers flow past a cylinder when the inlet velocity is uncertain. Based on the these examples, the method with stratified sampling is by far the most accurate and efficient method for complex model behavior in low dimension, particularly considering that this method can be implemented to exploit parallel computation. In the fourth example, the proposed approach is applied to heat conduction in an inhomogeneous plate with uncertain thermal conductivity modeled through a 100 degree-of-freedom Karhunen–Loève expansion. The results indicate that MultiNest cannot efficiently handle the high-dimensional parameter space, whereas the proposed MCMC-based method more accurately and efficiently explores the parameter space. The marginal likelihood results for the last three examples — when compared with the results obtained from standard Monte Carlo sampling, nested sampling, and MultiNest algorithm — show good agreement.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.