准静态电荷噪声对交换耦合量子点控制相门的影响

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Yinan Fang
{"title":"准静态电荷噪声对交换耦合量子点控制相门的影响","authors":"Yinan Fang","doi":"10.1016/j.physe.2025.116319","DOIUrl":null,"url":null,"abstract":"<div><div>Charge noise has been one of the main issues in realizing high fidelity two-qubit quantum gates in semiconductor based qubits. Here, we study the influence of quasistatic noise in quantum dot detuning on the controlled-phase gate for spin qubits that defined on a double quantum dot. Analytical expressions for the noise averaged Hamiltonian, exchange interaction, as well as the gate fidelity are derived for weak noise covering experimental relevant regime. We also perform interleaved two-qubit randomized benchmarking analysis for the controlled-phase gate and show that an exponential decay of the sequential fidelity is still valid for the weak noise.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"173 ","pages":"Article 116319"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled-phase gate in exchange coupled quantum dots affected by quasistatic charge noise\",\"authors\":\"Yinan Fang\",\"doi\":\"10.1016/j.physe.2025.116319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Charge noise has been one of the main issues in realizing high fidelity two-qubit quantum gates in semiconductor based qubits. Here, we study the influence of quasistatic noise in quantum dot detuning on the controlled-phase gate for spin qubits that defined on a double quantum dot. Analytical expressions for the noise averaged Hamiltonian, exchange interaction, as well as the gate fidelity are derived for weak noise covering experimental relevant regime. We also perform interleaved two-qubit randomized benchmarking analysis for the controlled-phase gate and show that an exponential decay of the sequential fidelity is still valid for the weak noise.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"173 \",\"pages\":\"Article 116319\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725001493\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725001493","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电荷噪声一直是实现高保真双量子位量子门的主要问题之一。本文研究了量子点失谐中准静态噪声对定义在双量子点上的自旋量子比特的控制相门的影响。导出了覆盖实验相关区域的弱噪声的噪声平均哈密顿量、交换相互作用和门保真度的解析表达式。我们还对控制相门进行了交错双量子位随机基准分析,并表明顺序保真度的指数衰减对于弱噪声仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlled-phase gate in exchange coupled quantum dots affected by quasistatic charge noise
Charge noise has been one of the main issues in realizing high fidelity two-qubit quantum gates in semiconductor based qubits. Here, we study the influence of quasistatic noise in quantum dot detuning on the controlled-phase gate for spin qubits that defined on a double quantum dot. Analytical expressions for the noise averaged Hamiltonian, exchange interaction, as well as the gate fidelity are derived for weak noise covering experimental relevant regime. We also perform interleaved two-qubit randomized benchmarking analysis for the controlled-phase gate and show that an exponential decay of the sequential fidelity is still valid for the weak noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信