{"title":"非对称小旅行商问题的完整性缺口:一个多面体和计算方法","authors":"Eleonora Vercesi , Janos Barta , Luca Maria Gambardella , Stefano Gualandi , Monaldo Mastrolilli","doi":"10.1016/j.disopt.2025.100901","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the integrality gap of the Asymmetric Traveling Salesman Problem (ATSP) with respect to the linear relaxation given by the Asymmetric Subtour Elimination Problem (ASEP) for instances with <span><math><mi>n</mi></math></span> nodes, where <span><math><mi>n</mi></math></span> is small. In particular, we focus on the geometric properties and symmetries of the ASEP polytope (<span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ASEP</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>) and its vertices. The polytope’s symmetries are exploited to design a heuristic pivoting algorithm to search vertices where the integrality gap is maximized. Furthermore, a general procedure for the extension of vertices from <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ASEP</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ASEP</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> is defined. The generated vertices improve the known lower bounds of the integrality gap for <span><math><mrow><mn>16</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>22</mn></mrow></math></span> and, provide small hard-to-solve ATSP instances.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"57 ","pages":"Article 100901"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the integrality gap of small Asymmetric Traveling Salesman Problems: A polyhedral and computational approach\",\"authors\":\"Eleonora Vercesi , Janos Barta , Luca Maria Gambardella , Stefano Gualandi , Monaldo Mastrolilli\",\"doi\":\"10.1016/j.disopt.2025.100901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the integrality gap of the Asymmetric Traveling Salesman Problem (ATSP) with respect to the linear relaxation given by the Asymmetric Subtour Elimination Problem (ASEP) for instances with <span><math><mi>n</mi></math></span> nodes, where <span><math><mi>n</mi></math></span> is small. In particular, we focus on the geometric properties and symmetries of the ASEP polytope (<span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ASEP</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>) and its vertices. The polytope’s symmetries are exploited to design a heuristic pivoting algorithm to search vertices where the integrality gap is maximized. Furthermore, a general procedure for the extension of vertices from <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ASEP</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>ASEP</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> is defined. The generated vertices improve the known lower bounds of the integrality gap for <span><math><mrow><mn>16</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>22</mn></mrow></math></span> and, provide small hard-to-solve ATSP instances.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"57 \",\"pages\":\"Article 100901\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528625000246\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000246","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the integrality gap of small Asymmetric Traveling Salesman Problems: A polyhedral and computational approach
In this paper, we investigate the integrality gap of the Asymmetric Traveling Salesman Problem (ATSP) with respect to the linear relaxation given by the Asymmetric Subtour Elimination Problem (ASEP) for instances with nodes, where is small. In particular, we focus on the geometric properties and symmetries of the ASEP polytope () and its vertices. The polytope’s symmetries are exploited to design a heuristic pivoting algorithm to search vertices where the integrality gap is maximized. Furthermore, a general procedure for the extension of vertices from to is defined. The generated vertices improve the known lower bounds of the integrality gap for and, provide small hard-to-solve ATSP instances.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.