YOLOv9-GSSA模型用于大豆幼苗和杂草的高效检测

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Baihe Liang , Liangchen Hu , Guangxing Liu , Peng Hu , Shaosheng Xu , Biao Jie
{"title":"YOLOv9-GSSA模型用于大豆幼苗和杂草的高效检测","authors":"Baihe Liang ,&nbsp;Liangchen Hu ,&nbsp;Guangxing Liu ,&nbsp;Peng Hu ,&nbsp;Shaosheng Xu ,&nbsp;Biao Jie","doi":"10.1016/j.atech.2025.101134","DOIUrl":null,"url":null,"abstract":"<div><div>To monitor soybean seedlings growth in real time, an effective method for accurately identifying seedlings and removing weeds is essential. Challenges include the small size and morphological similarity of seedlings and weeds, complicating conventional detection methods. To tackle these issues, we propose a real-time detection algorithm called YOLOv9-GSSA. The improved Mosaic-Dense algorithm increases object density at the model's input layer, enhancing its ability to capture detailed features. Additionally, the GSSA neck optimization module, combining GSConv and Gated Self-Attention, supports key information extraction and multi-scale feature interaction. The Swin-GSSA prediction head further utilizes spatial positional information, improving small object detection and handling overlapping occlusion. Experimental results show our model achieves a mAP of 47.5% with a detection speed of 23.42 ms per image, suitable for real-time monitoring. The enhanced model significantly improves the detection of soybean seedlings and weeds, making it a valuable tool for managing farmland effectively. This ultimately aids in precise yield estimation and decision-making in precision agriculture.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101134"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLOv9-GSSA model for efficient soybean seedlings and weeds detection\",\"authors\":\"Baihe Liang ,&nbsp;Liangchen Hu ,&nbsp;Guangxing Liu ,&nbsp;Peng Hu ,&nbsp;Shaosheng Xu ,&nbsp;Biao Jie\",\"doi\":\"10.1016/j.atech.2025.101134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To monitor soybean seedlings growth in real time, an effective method for accurately identifying seedlings and removing weeds is essential. Challenges include the small size and morphological similarity of seedlings and weeds, complicating conventional detection methods. To tackle these issues, we propose a real-time detection algorithm called YOLOv9-GSSA. The improved Mosaic-Dense algorithm increases object density at the model's input layer, enhancing its ability to capture detailed features. Additionally, the GSSA neck optimization module, combining GSConv and Gated Self-Attention, supports key information extraction and multi-scale feature interaction. The Swin-GSSA prediction head further utilizes spatial positional information, improving small object detection and handling overlapping occlusion. Experimental results show our model achieves a mAP of 47.5% with a detection speed of 23.42 ms per image, suitable for real-time monitoring. The enhanced model significantly improves the detection of soybean seedlings and weeds, making it a valuable tool for managing farmland effectively. This ultimately aids in precise yield estimation and decision-making in precision agriculture.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":\"12 \",\"pages\":\"Article 101134\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375525003661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了实时监测大豆幼苗的生长情况,建立一种准确识别幼苗和除草的有效方法至关重要。挑战包括幼苗和杂草的小尺寸和形态相似性,使传统的检测方法复杂化。为了解决这些问题,我们提出了一种名为YOLOv9-GSSA的实时检测算法。改进的Mosaic-Dense算法增加了模型输入层的对象密度,增强了模型捕获细节特征的能力。此外,GSSA颈部优化模块结合GSConv和门控自关注,支持关键信息提取和多尺度特征交互。swan - gssa预测头进一步利用空间位置信息,改进小目标检测和处理重叠遮挡。实验结果表明,该模型的mAP率为47.5%,每幅图像的检测速度为23.42 ms,适合实时监控。改进后的模型显著提高了对大豆幼苗和杂草的检测,使其成为有效管理农田的重要工具。这最终有助于精准农业的精确产量估算和决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YOLOv9-GSSA model for efficient soybean seedlings and weeds detection
To monitor soybean seedlings growth in real time, an effective method for accurately identifying seedlings and removing weeds is essential. Challenges include the small size and morphological similarity of seedlings and weeds, complicating conventional detection methods. To tackle these issues, we propose a real-time detection algorithm called YOLOv9-GSSA. The improved Mosaic-Dense algorithm increases object density at the model's input layer, enhancing its ability to capture detailed features. Additionally, the GSSA neck optimization module, combining GSConv and Gated Self-Attention, supports key information extraction and multi-scale feature interaction. The Swin-GSSA prediction head further utilizes spatial positional information, improving small object detection and handling overlapping occlusion. Experimental results show our model achieves a mAP of 47.5% with a detection speed of 23.42 ms per image, suitable for real-time monitoring. The enhanced model significantly improves the detection of soybean seedlings and weeds, making it a valuable tool for managing farmland effectively. This ultimately aids in precise yield estimation and decision-making in precision agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信