两相流CT图像中空隙率的数学建模与连通性增强分割

IF 2.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Zirou Jiang , Shuo Xu , Jiahao Chang , Jichen Miao , Yuewen Sun
{"title":"两相流CT图像中空隙率的数学建模与连通性增强分割","authors":"Zirou Jiang ,&nbsp;Shuo Xu ,&nbsp;Jiahao Chang ,&nbsp;Jichen Miao ,&nbsp;Yuewen Sun","doi":"10.1016/j.anucene.2025.111693","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate assessment of two-phase flow in high-temperature gas-cooled reactors (HTGRs) is crucial for nuclear safety and operational efficiency. Void fraction, a key parameter for evaluating two-phase flow and core stability, can be derived from CT images. In static conditions, its measurement reduces to a segmentation task, whereas dynamic conditions require pixel-level corrections due to nonlinear tomographic effects. This study formulates mathematical models addressing these effects and proposes TransUNet-CC, an enhanced segmentation framework incorporating void connectivity priors. Experimental results on CT images reconstructed via FBP, ADMM-TV, and DRP confirm its superior performance, achieving a Dice coefficient of 0.8358 and RVFE of 6.93%. Notably, the DRP algorithm provides high-resolution, low-noise reconstructions, ensuring precise void fraction estimation. This work advances image-based diagnostics for nuclear reactor monitoring, offering a robust solution for complex flow conditions in HTGRs.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"224 ","pages":"Article 111693"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling and connectivity-enhanced segmentation of void fraction in two-phase flow CT images\",\"authors\":\"Zirou Jiang ,&nbsp;Shuo Xu ,&nbsp;Jiahao Chang ,&nbsp;Jichen Miao ,&nbsp;Yuewen Sun\",\"doi\":\"10.1016/j.anucene.2025.111693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The accurate assessment of two-phase flow in high-temperature gas-cooled reactors (HTGRs) is crucial for nuclear safety and operational efficiency. Void fraction, a key parameter for evaluating two-phase flow and core stability, can be derived from CT images. In static conditions, its measurement reduces to a segmentation task, whereas dynamic conditions require pixel-level corrections due to nonlinear tomographic effects. This study formulates mathematical models addressing these effects and proposes TransUNet-CC, an enhanced segmentation framework incorporating void connectivity priors. Experimental results on CT images reconstructed via FBP, ADMM-TV, and DRP confirm its superior performance, achieving a Dice coefficient of 0.8358 and RVFE of 6.93%. Notably, the DRP algorithm provides high-resolution, low-noise reconstructions, ensuring precise void fraction estimation. This work advances image-based diagnostics for nuclear reactor monitoring, offering a robust solution for complex flow conditions in HTGRs.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":\"224 \",\"pages\":\"Article 111693\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454925005109\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454925005109","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高温气冷堆两相流的准确评估对核安全和运行效率至关重要。孔隙率是评价岩心两相流动和稳定性的关键参数,可以从CT图像中得到。在静态条件下,其测量减少到分割任务,而动态条件下,由于非线性层析效应需要像素级校正。本研究制定了解决这些影响的数学模型,并提出了TransUNet-CC,这是一种包含空洞连接先验的增强分割框架。通过FBP、ADMM-TV和DRP重建CT图像的实验结果证实了其优越的性能,Dice系数为0.8358,RVFE为6.93%。值得注意的是,DRP算法提供了高分辨率、低噪声的重建,确保了精确的空隙率估计。这项工作推进了基于图像的核反应堆监测诊断,为高温高温堆中复杂的流动条件提供了一个强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling and connectivity-enhanced segmentation of void fraction in two-phase flow CT images
The accurate assessment of two-phase flow in high-temperature gas-cooled reactors (HTGRs) is crucial for nuclear safety and operational efficiency. Void fraction, a key parameter for evaluating two-phase flow and core stability, can be derived from CT images. In static conditions, its measurement reduces to a segmentation task, whereas dynamic conditions require pixel-level corrections due to nonlinear tomographic effects. This study formulates mathematical models addressing these effects and proposes TransUNet-CC, an enhanced segmentation framework incorporating void connectivity priors. Experimental results on CT images reconstructed via FBP, ADMM-TV, and DRP confirm its superior performance, achieving a Dice coefficient of 0.8358 and RVFE of 6.93%. Notably, the DRP algorithm provides high-resolution, low-noise reconstructions, ensuring precise void fraction estimation. This work advances image-based diagnostics for nuclear reactor monitoring, offering a robust solution for complex flow conditions in HTGRs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信