用于增强氧合气体溶解的共价有机框架膜。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dafei Sheng, Xinlin Li, Shuang Zhao, Chao Sun, Qianli Ma, Xiao Feng* and Bo Wang*, 
{"title":"用于增强氧合气体溶解的共价有机框架膜。","authors":"Dafei Sheng,&nbsp;Xinlin Li,&nbsp;Shuang Zhao,&nbsp;Chao Sun,&nbsp;Qianli Ma,&nbsp;Xiao Feng* and Bo Wang*,&nbsp;","doi":"10.1021/jacs.5c06822","DOIUrl":null,"url":null,"abstract":"<p >Membrane-mediated gas-to-liquid mass transfer is crucial for chemical reactions and biological processes, yet low gas solubility in water limits exchange efficiency. To address this challenge, we leverage periodic, hydrophilic gradient nanochannels in highly oriented covalent organic framework (COF) membranes. These membranes exhibit a significantly higher oxygen dissolution rate than macroporous membranes with greater gas permeability, driven by nanoconfinement effects and increased liquid meniscus curvature, which reduce the hydrogen bond density and lower the oxygen–water binding energy. The engineered COF membrane achieves an unprecedented O<sub>2</sub> transfer rate of 2838 mL m<sup>–2</sup> min<sup>–1</sup> to blood, 11 times higher than that of the conventional oxygenation membrane, poly(4-methyl-1-pentene), while offering comparable blood compatibility and anticoagulant properties, along with a reduced risk of gas embolism.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 28","pages":"24838–24846"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent Organic Framework Membranes for Enhanced Gas Dissolution in Oxygenation\",\"authors\":\"Dafei Sheng,&nbsp;Xinlin Li,&nbsp;Shuang Zhao,&nbsp;Chao Sun,&nbsp;Qianli Ma,&nbsp;Xiao Feng* and Bo Wang*,&nbsp;\",\"doi\":\"10.1021/jacs.5c06822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Membrane-mediated gas-to-liquid mass transfer is crucial for chemical reactions and biological processes, yet low gas solubility in water limits exchange efficiency. To address this challenge, we leverage periodic, hydrophilic gradient nanochannels in highly oriented covalent organic framework (COF) membranes. These membranes exhibit a significantly higher oxygen dissolution rate than macroporous membranes with greater gas permeability, driven by nanoconfinement effects and increased liquid meniscus curvature, which reduce the hydrogen bond density and lower the oxygen–water binding energy. The engineered COF membrane achieves an unprecedented O<sub>2</sub> transfer rate of 2838 mL m<sup>–2</sup> min<sup>–1</sup> to blood, 11 times higher than that of the conventional oxygenation membrane, poly(4-methyl-1-pentene), while offering comparable blood compatibility and anticoagulant properties, along with a reduced risk of gas embolism.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 28\",\"pages\":\"24838–24846\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c06822\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c06822","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

膜介导的气液传质对化学反应和生物过程至关重要,但气体在水中的溶解度低限制了交换效率。为了解决这一挑战,我们在高取向共价有机框架(COF)膜中利用周期性亲水梯度纳米通道。由于纳米约束效应和液体半月板曲率的增加,使得膜的氢键密度降低,氧水结合能降低,氧溶解速率明显高于大孔膜。设计的COF膜实现了前所未有的2838 mL m-2 min-1的氧气向血液的传输速率,是传统氧合膜聚(4-甲基-1-戊烯)的11倍,同时具有类似的血液相容性和抗凝血性能,并降低了气体栓塞的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Covalent Organic Framework Membranes for Enhanced Gas Dissolution in Oxygenation

Covalent Organic Framework Membranes for Enhanced Gas Dissolution in Oxygenation

Membrane-mediated gas-to-liquid mass transfer is crucial for chemical reactions and biological processes, yet low gas solubility in water limits exchange efficiency. To address this challenge, we leverage periodic, hydrophilic gradient nanochannels in highly oriented covalent organic framework (COF) membranes. These membranes exhibit a significantly higher oxygen dissolution rate than macroporous membranes with greater gas permeability, driven by nanoconfinement effects and increased liquid meniscus curvature, which reduce the hydrogen bond density and lower the oxygen–water binding energy. The engineered COF membrane achieves an unprecedented O2 transfer rate of 2838 mL m–2 min–1 to blood, 11 times higher than that of the conventional oxygenation membrane, poly(4-methyl-1-pentene), while offering comparable blood compatibility and anticoagulant properties, along with a reduced risk of gas embolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信