不对称C-C耦合驱动CO转化为乙酸。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jia Liu, Ouwen Peng, Derong Chen, Xiaocang Han, Shibo Xi, Qikun Hu, Zixuan Gao, Yijia Yuan, Kun Zhang and Kian Ping Loh*, 
{"title":"不对称C-C耦合驱动CO转化为乙酸。","authors":"Jia Liu,&nbsp;Ouwen Peng,&nbsp;Derong Chen,&nbsp;Xiaocang Han,&nbsp;Shibo Xi,&nbsp;Qikun Hu,&nbsp;Zixuan Gao,&nbsp;Yijia Yuan,&nbsp;Kun Zhang and Kian Ping Loh*,&nbsp;","doi":"10.1021/jacs.5c07400","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical reduction of carbon monoxide (CORR) provides pathways for decarbonizing chemical manufacturing by producing high-value multicarbon (C<sub>2+</sub>) products, though achieving high activity and selectivity toward a single principal C<sub>2+</sub> product remains challenging. Acetate, a critical liquid product, can be metabolized by bacteria to synthesize long-chain carbon compounds. Here, we design a core–shell Cu<sub>2</sub>O/Cu-2-methylimidazole (CuIM) catalyst with dual Cu sites (Cu<sup>+</sup> and Cu<sup>0</sup>) during the CORR, which shifts the reaction pathway from symmetric *CO–*CO coupling to asymmetric *CH<sub>2</sub>–*CO coupling, thereby enhancing acetate formation. Ex situ X-ray diffraction spectroscopy (XRD) and in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) analyses reveal that Cu<sup>+</sup> remains stable and acts as an active site for generating *CH<sub>2</sub> intermediates on the CuIM catalyst. The CuIM electrocatalyst achieves a Faradaic efficiency (FE) of 77.8% for acetate production from CO and a partial current density of 541.3 mA cm<sup>–2</sup>. These advancements enable high energy efficiency in membrane electrode assemblies and reduced downstream separation costs for liquid products in solid-state electrolyte systems.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 28","pages":"24932–24940"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric C–C Coupling to Drive CO Conversion to Acetate\",\"authors\":\"Jia Liu,&nbsp;Ouwen Peng,&nbsp;Derong Chen,&nbsp;Xiaocang Han,&nbsp;Shibo Xi,&nbsp;Qikun Hu,&nbsp;Zixuan Gao,&nbsp;Yijia Yuan,&nbsp;Kun Zhang and Kian Ping Loh*,&nbsp;\",\"doi\":\"10.1021/jacs.5c07400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrochemical reduction of carbon monoxide (CORR) provides pathways for decarbonizing chemical manufacturing by producing high-value multicarbon (C<sub>2+</sub>) products, though achieving high activity and selectivity toward a single principal C<sub>2+</sub> product remains challenging. Acetate, a critical liquid product, can be metabolized by bacteria to synthesize long-chain carbon compounds. Here, we design a core–shell Cu<sub>2</sub>O/Cu-2-methylimidazole (CuIM) catalyst with dual Cu sites (Cu<sup>+</sup> and Cu<sup>0</sup>) during the CORR, which shifts the reaction pathway from symmetric *CO–*CO coupling to asymmetric *CH<sub>2</sub>–*CO coupling, thereby enhancing acetate formation. Ex situ X-ray diffraction spectroscopy (XRD) and in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) analyses reveal that Cu<sup>+</sup> remains stable and acts as an active site for generating *CH<sub>2</sub> intermediates on the CuIM catalyst. The CuIM electrocatalyst achieves a Faradaic efficiency (FE) of 77.8% for acetate production from CO and a partial current density of 541.3 mA cm<sup>–2</sup>. These advancements enable high energy efficiency in membrane electrode assemblies and reduced downstream separation costs for liquid products in solid-state electrolyte systems.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 28\",\"pages\":\"24932–24940\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c07400\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c07400","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学还原一氧化碳(CORR)为生产高价值的多碳(C2+)产品提供了脱碳途径,尽管实现对单一主要C2+产品的高活性和选择性仍然具有挑战性。醋酸盐是一种重要的液体产物,可被细菌代谢合成长链碳化合物。本研究设计了一种具有双Cu位(Cu+和Cu0)的Cu2O/Cu-2-甲基咪唑(CuIM)催化剂,将反应路径从对称的*CO-*CO偶联转变为不对称的*CH2-*CO偶联,从而促进了乙酸酯的形成。非原位x射线衍射(XRD)和原位衰减全反射傅立叶变换红外(ATR-FTIR)分析表明,Cu+在CuIM催化剂上保持稳定,并作为生成*CH2中间体的活性位点。CuIM电催化剂催化CO生成乙酸的法拉第效率(FE)为77.8%,分电流密度为541.3 mA cm-2。这些进步使膜电极组件具有高能效,并降低了固态电解质系统中液体产品的下游分离成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymmetric C–C Coupling to Drive CO Conversion to Acetate

Asymmetric C–C Coupling to Drive CO Conversion to Acetate

Electrochemical reduction of carbon monoxide (CORR) provides pathways for decarbonizing chemical manufacturing by producing high-value multicarbon (C2+) products, though achieving high activity and selectivity toward a single principal C2+ product remains challenging. Acetate, a critical liquid product, can be metabolized by bacteria to synthesize long-chain carbon compounds. Here, we design a core–shell Cu2O/Cu-2-methylimidazole (CuIM) catalyst with dual Cu sites (Cu+ and Cu0) during the CORR, which shifts the reaction pathway from symmetric *CO–*CO coupling to asymmetric *CH2–*CO coupling, thereby enhancing acetate formation. Ex situ X-ray diffraction spectroscopy (XRD) and in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) analyses reveal that Cu+ remains stable and acts as an active site for generating *CH2 intermediates on the CuIM catalyst. The CuIM electrocatalyst achieves a Faradaic efficiency (FE) of 77.8% for acetate production from CO and a partial current density of 541.3 mA cm–2. These advancements enable high energy efficiency in membrane electrode assemblies and reduced downstream separation costs for liquid products in solid-state electrolyte systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信