Ashley V DiMarco,Mirunalini Ravichandran,Jeff Lau,Anthony Lima,Jennifer Lacap,Pablo Saenz-Lopez Larrocha,Eva Lin,Julie Weng,Luca Gerosa,Thomas Hunsaker,Yang Xiao,Monika Miś,Charles Havnar,Wennie Chen,Kai H Barck,Klara Totpal,Oded Foreman,Nicole M Sodir,Mark Merchant,Danilo Maddalo
{"title":"RIT1M90I是肺腺癌肿瘤发生和靶向治疗耐药的驱动因子。","authors":"Ashley V DiMarco,Mirunalini Ravichandran,Jeff Lau,Anthony Lima,Jennifer Lacap,Pablo Saenz-Lopez Larrocha,Eva Lin,Julie Weng,Luca Gerosa,Thomas Hunsaker,Yang Xiao,Monika Miś,Charles Havnar,Wennie Chen,Kai H Barck,Klara Totpal,Oded Foreman,Nicole M Sodir,Mark Merchant,Danilo Maddalo","doi":"10.1158/0008-5472.can-24-3662","DOIUrl":null,"url":null,"abstract":"RIT1 is a RAS-family GTPase that is mutated in 2.4% and amplified in up to 14% of lung adenocarcinoma patients. Yet, the oncogenic potential of RIT1 in the lungs has not been fully established. Consequently, patients with RIT1 alterations are considered \"oncogene-negative\" and are not eligible for any targeted therapy in the clinic. The role of RIT1 in cancer has been historically understudied due to the lack of in vitro and in vivo models harboring RIT1 alterations. In this study, we generated a murine model of RIT1M90I-mutant lung cancer. RIT1M90I expression induced tumorigenesis in the lungs, and the tumors displayed histopathological features similar to lung adenocarcinoma in humans. An unbiased chemical compound screen leveraging this model revealed a sensitivity to inhibitors of the MAPK, PI3K, and cholesterol biosynthesis pathways in RIT1 mutant cell lines. The SHP2 inhibitor, migoprotafib, in combination with other MAPK pathway targeted therapies effectively suppressed the growth of RIT1 mutant cells ex vivo and in vivo. Finally, RIT1M90I drove resistance to the KRASG12C inhibitor, divarasib, and the combination with migoprotafib reverted this phenotype. Together, our data shows that RIT1M90I is a bona fide oncogenic driver of lung cancer and mediator of targeted therapy resistance as a co-occurring mutation and suggests that RIT1-altered cancer patients may benefit from combination treatments with a SHP2 inhibitor.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"20 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIT1M90I is a driver of lung adenocarcinoma tumorigenesis and resistance to targeted therapy.\",\"authors\":\"Ashley V DiMarco,Mirunalini Ravichandran,Jeff Lau,Anthony Lima,Jennifer Lacap,Pablo Saenz-Lopez Larrocha,Eva Lin,Julie Weng,Luca Gerosa,Thomas Hunsaker,Yang Xiao,Monika Miś,Charles Havnar,Wennie Chen,Kai H Barck,Klara Totpal,Oded Foreman,Nicole M Sodir,Mark Merchant,Danilo Maddalo\",\"doi\":\"10.1158/0008-5472.can-24-3662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RIT1 is a RAS-family GTPase that is mutated in 2.4% and amplified in up to 14% of lung adenocarcinoma patients. Yet, the oncogenic potential of RIT1 in the lungs has not been fully established. Consequently, patients with RIT1 alterations are considered \\\"oncogene-negative\\\" and are not eligible for any targeted therapy in the clinic. The role of RIT1 in cancer has been historically understudied due to the lack of in vitro and in vivo models harboring RIT1 alterations. In this study, we generated a murine model of RIT1M90I-mutant lung cancer. RIT1M90I expression induced tumorigenesis in the lungs, and the tumors displayed histopathological features similar to lung adenocarcinoma in humans. An unbiased chemical compound screen leveraging this model revealed a sensitivity to inhibitors of the MAPK, PI3K, and cholesterol biosynthesis pathways in RIT1 mutant cell lines. The SHP2 inhibitor, migoprotafib, in combination with other MAPK pathway targeted therapies effectively suppressed the growth of RIT1 mutant cells ex vivo and in vivo. Finally, RIT1M90I drove resistance to the KRASG12C inhibitor, divarasib, and the combination with migoprotafib reverted this phenotype. Together, our data shows that RIT1M90I is a bona fide oncogenic driver of lung cancer and mediator of targeted therapy resistance as a co-occurring mutation and suggests that RIT1-altered cancer patients may benefit from combination treatments with a SHP2 inhibitor.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-24-3662\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-3662","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
RIT1M90I is a driver of lung adenocarcinoma tumorigenesis and resistance to targeted therapy.
RIT1 is a RAS-family GTPase that is mutated in 2.4% and amplified in up to 14% of lung adenocarcinoma patients. Yet, the oncogenic potential of RIT1 in the lungs has not been fully established. Consequently, patients with RIT1 alterations are considered "oncogene-negative" and are not eligible for any targeted therapy in the clinic. The role of RIT1 in cancer has been historically understudied due to the lack of in vitro and in vivo models harboring RIT1 alterations. In this study, we generated a murine model of RIT1M90I-mutant lung cancer. RIT1M90I expression induced tumorigenesis in the lungs, and the tumors displayed histopathological features similar to lung adenocarcinoma in humans. An unbiased chemical compound screen leveraging this model revealed a sensitivity to inhibitors of the MAPK, PI3K, and cholesterol biosynthesis pathways in RIT1 mutant cell lines. The SHP2 inhibitor, migoprotafib, in combination with other MAPK pathway targeted therapies effectively suppressed the growth of RIT1 mutant cells ex vivo and in vivo. Finally, RIT1M90I drove resistance to the KRASG12C inhibitor, divarasib, and the combination with migoprotafib reverted this phenotype. Together, our data shows that RIT1M90I is a bona fide oncogenic driver of lung cancer and mediator of targeted therapy resistance as a co-occurring mutation and suggests that RIT1-altered cancer patients may benefit from combination treatments with a SHP2 inhibitor.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.