Gemma Postill, Anglin Dent, Jill Dombroski, Amol A Verma, Jeff Myers, Tavis Apramian
{"title":"家庭医学住院医师对重症患者生存评估人工智能的看法","authors":"Gemma Postill, Anglin Dent, Jill Dombroski, Amol A Verma, Jeff Myers, Tavis Apramian","doi":"10.1371/journal.pdig.0000917","DOIUrl":null,"url":null,"abstract":"<p><p>As technology for artificial intelligence (AI) in medicine has rapidly proliferated, research is needed on how AI should be used in healthcare. Family physicians could deploy AI to predict survival in serious illness which is a particularly difficult task given the breadth of diseases encountered in primary care. Little research exists to inform whether survival estimation tools are welcome in primary care to manage serious illness prognostication. To address this gap, we elicited the perspectives of family medicine residents on the potential use of AI to help them predict survival (i.e., time expected) for their patients with serious illness. Our qualitative study draws on semi-structured interview data from 18 family medicine residents in Canada. We used a pragmatic framework to conduct our analysis, employing principles of constructivist grounded theory. We identified that family medicine residents were receptive to AI survival estimation for serious illness management, particularly for supporting their delivery of expert advice over a broad range of clinical topics. However, caring for patients with serious illness in primary care involves more than survival estimation, with such a tool having likely only limited applicability to end of life. Summarizing these perspectives, we identified four themes: (1) improving patient care with AI, (2) AI with a grain of salt, (3) patient-driven use of AI, and (4) augmenting, not replacing family physicians. Thus, survival estimation with AI for serious illness has potential clinical value in primary care. In addition to survival, pertinent challenges to address with AI include understanding of expected function, maximizing quality of life, and response to interventions, in addition to quantifying survival time. Future prognostication models should consider use of additional patient-centered outcomes and modifying the outcomes predicted based on prediction timepoints. To successfully deploy these technologies in primary care, additional education and role modelling of technology use is needed.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 7","pages":"e0000917"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212547/pdf/","citationCount":"0","resultStr":"{\"title\":\"Perspectives of family medicine residents on artificial intelligence for survival estimation in patients with serious illness.\",\"authors\":\"Gemma Postill, Anglin Dent, Jill Dombroski, Amol A Verma, Jeff Myers, Tavis Apramian\",\"doi\":\"10.1371/journal.pdig.0000917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As technology for artificial intelligence (AI) in medicine has rapidly proliferated, research is needed on how AI should be used in healthcare. Family physicians could deploy AI to predict survival in serious illness which is a particularly difficult task given the breadth of diseases encountered in primary care. Little research exists to inform whether survival estimation tools are welcome in primary care to manage serious illness prognostication. To address this gap, we elicited the perspectives of family medicine residents on the potential use of AI to help them predict survival (i.e., time expected) for their patients with serious illness. Our qualitative study draws on semi-structured interview data from 18 family medicine residents in Canada. We used a pragmatic framework to conduct our analysis, employing principles of constructivist grounded theory. We identified that family medicine residents were receptive to AI survival estimation for serious illness management, particularly for supporting their delivery of expert advice over a broad range of clinical topics. However, caring for patients with serious illness in primary care involves more than survival estimation, with such a tool having likely only limited applicability to end of life. Summarizing these perspectives, we identified four themes: (1) improving patient care with AI, (2) AI with a grain of salt, (3) patient-driven use of AI, and (4) augmenting, not replacing family physicians. Thus, survival estimation with AI for serious illness has potential clinical value in primary care. In addition to survival, pertinent challenges to address with AI include understanding of expected function, maximizing quality of life, and response to interventions, in addition to quantifying survival time. Future prognostication models should consider use of additional patient-centered outcomes and modifying the outcomes predicted based on prediction timepoints. To successfully deploy these technologies in primary care, additional education and role modelling of technology use is needed.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 7\",\"pages\":\"e0000917\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212547/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perspectives of family medicine residents on artificial intelligence for survival estimation in patients with serious illness.
As technology for artificial intelligence (AI) in medicine has rapidly proliferated, research is needed on how AI should be used in healthcare. Family physicians could deploy AI to predict survival in serious illness which is a particularly difficult task given the breadth of diseases encountered in primary care. Little research exists to inform whether survival estimation tools are welcome in primary care to manage serious illness prognostication. To address this gap, we elicited the perspectives of family medicine residents on the potential use of AI to help them predict survival (i.e., time expected) for their patients with serious illness. Our qualitative study draws on semi-structured interview data from 18 family medicine residents in Canada. We used a pragmatic framework to conduct our analysis, employing principles of constructivist grounded theory. We identified that family medicine residents were receptive to AI survival estimation for serious illness management, particularly for supporting their delivery of expert advice over a broad range of clinical topics. However, caring for patients with serious illness in primary care involves more than survival estimation, with such a tool having likely only limited applicability to end of life. Summarizing these perspectives, we identified four themes: (1) improving patient care with AI, (2) AI with a grain of salt, (3) patient-driven use of AI, and (4) augmenting, not replacing family physicians. Thus, survival estimation with AI for serious illness has potential clinical value in primary care. In addition to survival, pertinent challenges to address with AI include understanding of expected function, maximizing quality of life, and response to interventions, in addition to quantifying survival time. Future prognostication models should consider use of additional patient-centered outcomes and modifying the outcomes predicted based on prediction timepoints. To successfully deploy these technologies in primary care, additional education and role modelling of technology use is needed.