{"title":"用于推断三维染色质结构的统计曲线模型。","authors":"Elena Tuzhilina, Trevor Hastie, Mark Segal","doi":"10.1214/24-AOAS1917","DOIUrl":null,"url":null,"abstract":"<p><p>Reconstructing three-dimensional (3D) chromatin structure from conformation capture assays (such as Hi-C) is a critical task in computational biology, since chromatin spatial architecture plays a vital role in numerous cellular processes and direct imaging is challenging. Most existing algorithms that operate on Hi-C contact matrices produce reconstructed 3D configurations in the form of a polygonal chain. However, none of the methods exploit the fact that the target solution is a (smooth) curve in 3D: this contiguity attribute is either ignored or indirectly addressed by imposing spatial constraints that are challenging to formulate. In this paper we develop both B-spline and smoothing spline techniques for directly capturing this potentially complex 1D curve. We subsequently combine these techniques with a Poisson model for contact counts and compare their performance on a real data example. In addition, motivated by the sparsity of Hi-C contact data, especially when obtained from single-cell assays, we appreciably extend the class of distributions used to model contact counts. We build a general distribution-based metric scaling ( <math><mi>DBMS</mi></math> ) framework from which we develop zero-inflated and Hurdle Poisson models as well as negative binomial applications. Illustrative applications make recourse to bulk Hi-C data from IMR90 cells and single-cell Hi-C data from mouse embryonic stem cells.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 4","pages":"2979-3006"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209861/pdf/","citationCount":"0","resultStr":"{\"title\":\"STATISTICAL CURVE MODELS FOR INFERRING 3D CHROMATIN ARCHITECTURE.\",\"authors\":\"Elena Tuzhilina, Trevor Hastie, Mark Segal\",\"doi\":\"10.1214/24-AOAS1917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reconstructing three-dimensional (3D) chromatin structure from conformation capture assays (such as Hi-C) is a critical task in computational biology, since chromatin spatial architecture plays a vital role in numerous cellular processes and direct imaging is challenging. Most existing algorithms that operate on Hi-C contact matrices produce reconstructed 3D configurations in the form of a polygonal chain. However, none of the methods exploit the fact that the target solution is a (smooth) curve in 3D: this contiguity attribute is either ignored or indirectly addressed by imposing spatial constraints that are challenging to formulate. In this paper we develop both B-spline and smoothing spline techniques for directly capturing this potentially complex 1D curve. We subsequently combine these techniques with a Poisson model for contact counts and compare their performance on a real data example. In addition, motivated by the sparsity of Hi-C contact data, especially when obtained from single-cell assays, we appreciably extend the class of distributions used to model contact counts. We build a general distribution-based metric scaling ( <math><mi>DBMS</mi></math> ) framework from which we develop zero-inflated and Hurdle Poisson models as well as negative binomial applications. Illustrative applications make recourse to bulk Hi-C data from IMR90 cells and single-cell Hi-C data from mouse embryonic stem cells.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"18 4\",\"pages\":\"2979-3006\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/24-AOAS1917\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-AOAS1917","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
STATISTICAL CURVE MODELS FOR INFERRING 3D CHROMATIN ARCHITECTURE.
Reconstructing three-dimensional (3D) chromatin structure from conformation capture assays (such as Hi-C) is a critical task in computational biology, since chromatin spatial architecture plays a vital role in numerous cellular processes and direct imaging is challenging. Most existing algorithms that operate on Hi-C contact matrices produce reconstructed 3D configurations in the form of a polygonal chain. However, none of the methods exploit the fact that the target solution is a (smooth) curve in 3D: this contiguity attribute is either ignored or indirectly addressed by imposing spatial constraints that are challenging to formulate. In this paper we develop both B-spline and smoothing spline techniques for directly capturing this potentially complex 1D curve. We subsequently combine these techniques with a Poisson model for contact counts and compare their performance on a real data example. In addition, motivated by the sparsity of Hi-C contact data, especially when obtained from single-cell assays, we appreciably extend the class of distributions used to model contact counts. We build a general distribution-based metric scaling ( ) framework from which we develop zero-inflated and Hurdle Poisson models as well as negative binomial applications. Illustrative applications make recourse to bulk Hi-C data from IMR90 cells and single-cell Hi-C data from mouse embryonic stem cells.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.