{"title":"交叉韧带疾病的磁共振成像:最新进展。","authors":"Tanda Yang, Yexin Li, Longtao Yang, Qian Liu","doi":"10.1530/EOR-2024-0093","DOIUrl":null,"url":null,"abstract":"<p><p>While conventional structural magnetic resonance imaging (MRI) can detect cruciate ligament anatomy and injuries, it has inherent limitations. Recently, novel MRI technologies such as quantitative MRI and artificial intelligence (AI) have emerged to mitigate these shortcomings, providing critical quantitative insights beyond gross morphological imaging and poised to expand current knowledge in assessing cruciate ligament injuries and to facilitate clinical decision making. Quantitative MRI serves as a noninvasive histological and quantification tool, which significantly improves the evaluation of degeneration and repair processes. AI plays a crucial role in automating radiological estimations and enabling data-driven predictions of future events. Despite the transformative impact of advanced MRI techniques on the analytical and diagnostic algorithms related to cruciate ligament disorders, future efforts are warranted to address challenges such as economic burdens and ethical considerations.</p>","PeriodicalId":48598,"journal":{"name":"Efort Open Reviews","volume":"10 7","pages":"475-486"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232404/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnetic resonance imaging of cruciate ligament disorders: current updates.\",\"authors\":\"Tanda Yang, Yexin Li, Longtao Yang, Qian Liu\",\"doi\":\"10.1530/EOR-2024-0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While conventional structural magnetic resonance imaging (MRI) can detect cruciate ligament anatomy and injuries, it has inherent limitations. Recently, novel MRI technologies such as quantitative MRI and artificial intelligence (AI) have emerged to mitigate these shortcomings, providing critical quantitative insights beyond gross morphological imaging and poised to expand current knowledge in assessing cruciate ligament injuries and to facilitate clinical decision making. Quantitative MRI serves as a noninvasive histological and quantification tool, which significantly improves the evaluation of degeneration and repair processes. AI plays a crucial role in automating radiological estimations and enabling data-driven predictions of future events. Despite the transformative impact of advanced MRI techniques on the analytical and diagnostic algorithms related to cruciate ligament disorders, future efforts are warranted to address challenges such as economic burdens and ethical considerations.</p>\",\"PeriodicalId\":48598,\"journal\":{\"name\":\"Efort Open Reviews\",\"volume\":\"10 7\",\"pages\":\"475-486\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232404/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Efort Open Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/EOR-2024-0093\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Efort Open Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/EOR-2024-0093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Magnetic resonance imaging of cruciate ligament disorders: current updates.
While conventional structural magnetic resonance imaging (MRI) can detect cruciate ligament anatomy and injuries, it has inherent limitations. Recently, novel MRI technologies such as quantitative MRI and artificial intelligence (AI) have emerged to mitigate these shortcomings, providing critical quantitative insights beyond gross morphological imaging and poised to expand current knowledge in assessing cruciate ligament injuries and to facilitate clinical decision making. Quantitative MRI serves as a noninvasive histological and quantification tool, which significantly improves the evaluation of degeneration and repair processes. AI plays a crucial role in automating radiological estimations and enabling data-driven predictions of future events. Despite the transformative impact of advanced MRI techniques on the analytical and diagnostic algorithms related to cruciate ligament disorders, future efforts are warranted to address challenges such as economic burdens and ethical considerations.
期刊介绍:
EFORT Open Reviews publishes high-quality instructional review articles across the whole field of orthopaedics and traumatology. Commissioned, peer-reviewed articles from international experts summarize current knowledge and practice in orthopaedics, with the aim of providing systematic coverage of the field. All articles undergo rigorous scientific editing to ensure the highest standards of accuracy and clarity.
This continuously published online journal is fully open access and will provide integrated CME. It is an authoritative resource for educating trainees and supports practising orthopaedic surgeons in keeping informed about the latest clinical and scientific advances.
One print issue containing a selection of papers from the journal will be published each year to coincide with the EFORT Annual Congress.
EFORT Open Reviews is the official journal of the European Federation of National Associations of Orthopaedics and Traumatology (EFORT) and is published in partnership with The British Editorial Society of Bone & Joint Surgery.