帕金森病模型中AMPK-SENP1-Sirt3信号缺陷损害线粒体复合物I功能

IF 15.2 1区 医学 Q1 NEUROSCIENCES
Xiaoyu Sun, Jianyi Shen, Yimei Shu, Tianshi Wang, Lu He, Ruinan Shen, Yifan Zhou, Jinke Cheng, Suzhen Lin, Jianqing Ding
{"title":"帕金森病模型中AMPK-SENP1-Sirt3信号缺陷损害线粒体复合物I功能","authors":"Xiaoyu Sun, Jianyi Shen, Yimei Shu, Tianshi Wang, Lu He, Ruinan Shen, Yifan Zhou, Jinke Cheng, Suzhen Lin, Jianqing Ding","doi":"10.1186/s40035-025-00489-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epidemiological studies have revealed increased Parkinson's disease (PD) risk among individuals exposed to pesticides like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is frequently used to induce PD-like symptoms in research models by disrupting mitochondrial complex I (CI) function and causing dopaminergic neuronal loss in the nigrostriatal region. However, the pathway(s) through which MPTP impairs mitochondrial CI function remain to be elucidated. In this study, we aim to identify the molecular mechanisms through which MPTP modulates CI function and define the specific subunits of mitochondrial CI affected by MPTP.</p><p><strong>Methods: </strong>Male mice encompassing either wild-type Sirt3 or Sirt3 K223R de-SUMOylation mutation, were intraperitoneally injected with either MPTP or saline. In vitro experiments were conducted using the SH-SY5Y cell line with or without the Sirt3 de-SUMOylation mutation. Movement performance, mitochondrial function, and protein acetylation were evaluated.</p><p><strong>Results: </strong>MPTP exposure, both in vitro and in vivo, disrupted the AMPK-SENP1-Sirt3 axis, leading to impairment of mitochondrial function. Specifically, MPTP suppressed activation of AMPK, impeding the entry of SENP1 into the mitochondria. The lack of mitochondrial SENP1 resulted in increased levels of SUMOylated Sirt3, which inhibited its deacetylase activity. This led to a significant increase in the acetylation of CI subunits NDUFS3 and NDUFA5, which resulted in reduced CI activity and inhibition of mitochondrial function, and eventually dopaminergic neuronal death. In this pathway, sustained deSUMOylation mutation of Sirt3 (K223R in mice, K288R in humans) mitigated the impact of MPTP on mitochondrial dysregulation, as well as dopaminergic neuronal death and behavioral deficits.</p><p><strong>Conclusion: </strong>The disordered AMPK-SENP1-Sirt3 pathway plays a crucial role in the MPTP-induced CI dysfunction and PD-like phenotype, which provide valuable insights into the mechanisms of PD pathogenesis.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"14 1","pages":"34"},"PeriodicalIF":15.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deficient AMPK-SENP1-Sirt3 signaling impairs mitochondrial complex I function in Parkinson's disease model.\",\"authors\":\"Xiaoyu Sun, Jianyi Shen, Yimei Shu, Tianshi Wang, Lu He, Ruinan Shen, Yifan Zhou, Jinke Cheng, Suzhen Lin, Jianqing Ding\",\"doi\":\"10.1186/s40035-025-00489-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Epidemiological studies have revealed increased Parkinson's disease (PD) risk among individuals exposed to pesticides like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is frequently used to induce PD-like symptoms in research models by disrupting mitochondrial complex I (CI) function and causing dopaminergic neuronal loss in the nigrostriatal region. However, the pathway(s) through which MPTP impairs mitochondrial CI function remain to be elucidated. In this study, we aim to identify the molecular mechanisms through which MPTP modulates CI function and define the specific subunits of mitochondrial CI affected by MPTP.</p><p><strong>Methods: </strong>Male mice encompassing either wild-type Sirt3 or Sirt3 K223R de-SUMOylation mutation, were intraperitoneally injected with either MPTP or saline. In vitro experiments were conducted using the SH-SY5Y cell line with or without the Sirt3 de-SUMOylation mutation. Movement performance, mitochondrial function, and protein acetylation were evaluated.</p><p><strong>Results: </strong>MPTP exposure, both in vitro and in vivo, disrupted the AMPK-SENP1-Sirt3 axis, leading to impairment of mitochondrial function. Specifically, MPTP suppressed activation of AMPK, impeding the entry of SENP1 into the mitochondria. The lack of mitochondrial SENP1 resulted in increased levels of SUMOylated Sirt3, which inhibited its deacetylase activity. This led to a significant increase in the acetylation of CI subunits NDUFS3 and NDUFA5, which resulted in reduced CI activity and inhibition of mitochondrial function, and eventually dopaminergic neuronal death. In this pathway, sustained deSUMOylation mutation of Sirt3 (K223R in mice, K288R in humans) mitigated the impact of MPTP on mitochondrial dysregulation, as well as dopaminergic neuronal death and behavioral deficits.</p><p><strong>Conclusion: </strong>The disordered AMPK-SENP1-Sirt3 pathway plays a crucial role in the MPTP-induced CI dysfunction and PD-like phenotype, which provide valuable insights into the mechanisms of PD pathogenesis.</p>\",\"PeriodicalId\":23269,\"journal\":{\"name\":\"Translational Neurodegeneration\",\"volume\":\"14 1\",\"pages\":\"34\"},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40035-025-00489-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-025-00489-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:流行病学研究表明,暴露于农药如1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)的个体患帕金森病(PD)的风险增加。在研究模型中,MPTP常被用于通过破坏线粒体复合体I (CI)功能并导致黑质纹状体区域多巴胺能神经元丢失来诱导pd样症状。然而,MPTP损害线粒体CI功能的途径仍有待阐明。在本研究中,我们旨在确定MPTP调节CI功能的分子机制,并确定MPTP影响线粒体CI的特定亚基。方法:将携带野生型Sirt3或Sirt3 K223R去sumo化突变的雄性小鼠腹腔注射MPTP或生理盐水。体外实验使用带有或不带有Sirt3去sumo化突变的SH-SY5Y细胞系进行。评估运动性能、线粒体功能和蛋白质乙酰化。结果:MPTP暴露,无论是体外还是体内,都会破坏AMPK-SENP1-Sirt3轴,导致线粒体功能受损。具体来说,MPTP抑制AMPK的激活,阻碍SENP1进入线粒体。缺乏线粒体SENP1导致summoylated Sirt3水平升高,从而抑制其去乙酰化酶活性。这导致CI亚基NDUFS3和NDUFA5乙酰化显著增加,从而导致CI活性降低和线粒体功能抑制,最终导致多巴胺能神经元死亡。在这一途径中,Sirt3(小鼠中为K223R,人类中为K288R)的持续deSUMOylation突变减轻了MPTP对线粒体失调、多巴胺能神经元死亡和行为缺陷的影响。结论:AMPK-SENP1-Sirt3通路紊乱在mptp诱导的CI功能障碍和PD样表型中起着至关重要的作用,为PD的发病机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deficient AMPK-SENP1-Sirt3 signaling impairs mitochondrial complex I function in Parkinson's disease model.

Background: Epidemiological studies have revealed increased Parkinson's disease (PD) risk among individuals exposed to pesticides like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is frequently used to induce PD-like symptoms in research models by disrupting mitochondrial complex I (CI) function and causing dopaminergic neuronal loss in the nigrostriatal region. However, the pathway(s) through which MPTP impairs mitochondrial CI function remain to be elucidated. In this study, we aim to identify the molecular mechanisms through which MPTP modulates CI function and define the specific subunits of mitochondrial CI affected by MPTP.

Methods: Male mice encompassing either wild-type Sirt3 or Sirt3 K223R de-SUMOylation mutation, were intraperitoneally injected with either MPTP or saline. In vitro experiments were conducted using the SH-SY5Y cell line with or without the Sirt3 de-SUMOylation mutation. Movement performance, mitochondrial function, and protein acetylation were evaluated.

Results: MPTP exposure, both in vitro and in vivo, disrupted the AMPK-SENP1-Sirt3 axis, leading to impairment of mitochondrial function. Specifically, MPTP suppressed activation of AMPK, impeding the entry of SENP1 into the mitochondria. The lack of mitochondrial SENP1 resulted in increased levels of SUMOylated Sirt3, which inhibited its deacetylase activity. This led to a significant increase in the acetylation of CI subunits NDUFS3 and NDUFA5, which resulted in reduced CI activity and inhibition of mitochondrial function, and eventually dopaminergic neuronal death. In this pathway, sustained deSUMOylation mutation of Sirt3 (K223R in mice, K288R in humans) mitigated the impact of MPTP on mitochondrial dysregulation, as well as dopaminergic neuronal death and behavioral deficits.

Conclusion: The disordered AMPK-SENP1-Sirt3 pathway plays a crucial role in the MPTP-induced CI dysfunction and PD-like phenotype, which provide valuable insights into the mechanisms of PD pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信