标记树k-Robinson-Foulds不相似测度的渐近分布。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Michael Fuchs, Mike Steel
{"title":"标记树k-Robinson-Foulds不相似测度的渐近分布。","authors":"Michael Fuchs, Mike Steel","doi":"10.1089/cmb.2025.0093","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by applications in medical bioinformatics, Khayatian et al. (2024) introduced a family of metrics on Cayley trees [the <i>k</i>-Robinson-Foulds (RF) distance, for <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo></mrow></math> . . . <math><mrow><mo>,</mo><mi>n</mi><mo>-</mo><mn>2</mn></mrow></math>] and explored their distribution on pairs of random Cayley trees via simulations. In this article, we investigate this distribution mathematically and derive exact asymptotic descriptions of the distribution of the <i>k</i>-RF metric for the extreme values <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn></mrow></math> and <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mi>n</mi><mo>-</mo><mn>2</mn></mrow></math>, as <i>n</i> becomes large. We show that a linear transform of the 0-RF metric converges to a Poisson distribution (with mean 2), whereas a similar transform for the (<math><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></math>)-RF metric leads to a normal distribution (with mean <math><mrow><mstyle><mo>∼</mo></mstyle><mo> </mo><mi>n</mi><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mrow></math>). These results (together with the case <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn></mrow></math> which behaves quite differently and <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mi>n</mi><mo>-</mo><mn>3</mn></mrow></math>) shed light on the earlier simulation results and the predictions made concerning them.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Asymptotic Distribution of the <i>k</i>-Robinson-Foulds Dissimilarity Measure on Labeled Trees.\",\"authors\":\"Michael Fuchs, Mike Steel\",\"doi\":\"10.1089/cmb.2025.0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motivated by applications in medical bioinformatics, Khayatian et al. (2024) introduced a family of metrics on Cayley trees [the <i>k</i>-Robinson-Foulds (RF) distance, for <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn><mo>,</mo></mrow></math> . . . <math><mrow><mo>,</mo><mi>n</mi><mo>-</mo><mn>2</mn></mrow></math>] and explored their distribution on pairs of random Cayley trees via simulations. In this article, we investigate this distribution mathematically and derive exact asymptotic descriptions of the distribution of the <i>k</i>-RF metric for the extreme values <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mn>0</mn></mrow></math> and <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mi>n</mi><mo>-</mo><mn>2</mn></mrow></math>, as <i>n</i> becomes large. We show that a linear transform of the 0-RF metric converges to a Poisson distribution (with mean 2), whereas a similar transform for the (<math><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></math>)-RF metric leads to a normal distribution (with mean <math><mrow><mstyle><mo>∼</mo></mstyle><mo> </mo><mi>n</mi><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>-</mo><mn>2</mn></mrow></msup></mrow></mrow></math>). These results (together with the case <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mn>1</mn></mrow></math> which behaves quite differently and <math><mrow><mi>k</mi><mo> </mo><mo>=</mo><mo> </mo><mi>n</mi><mo>-</mo><mn>3</mn></mrow></math>) shed light on the earlier simulation results and the predictions made concerning them.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2025.0093\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2025.0093","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

受医学生物信息学应用的启发,Khayatian等人(2024)在Cayley树(k- robinson - foulds (RF)距离,k = 0,…)上引入了一系列指标。,n-2],并通过模拟探索它们在成对随机Cayley树上的分布。在本文中,我们从数学上研究了这种分布,并推导了当n变大时k = 0和k = n-2的极值时k- rf度规分布的精确渐近描述。我们证明了0-RF度规的线性变换收敛于泊松分布(平均值为2),而(n-2)-RF度规的类似变换导致正态分布(平均值为~ ne-2)。这些结果(连同k = 1的表现与k = n-3完全不同的情况)阐明了早期的模拟结果和有关它们的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Asymptotic Distribution of the k-Robinson-Foulds Dissimilarity Measure on Labeled Trees.

Motivated by applications in medical bioinformatics, Khayatian et al. (2024) introduced a family of metrics on Cayley trees [the k-Robinson-Foulds (RF) distance, for k=0, . . . ,n-2] and explored their distribution on pairs of random Cayley trees via simulations. In this article, we investigate this distribution mathematically and derive exact asymptotic descriptions of the distribution of the k-RF metric for the extreme values k=0 and k=n-2, as n becomes large. We show that a linear transform of the 0-RF metric converges to a Poisson distribution (with mean 2), whereas a similar transform for the (n-2)-RF metric leads to a normal distribution (with mean ne-2). These results (together with the case k=1 which behaves quite differently and k=n-3) shed light on the earlier simulation results and the predictions made concerning them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信