{"title":"考虑ARID1A蛋白表达和活性并有效利用多组学数据的子宫内膜癌患者分层新方法","authors":"Junsoo Song, Ayako Ui, Kenji Mizuguchi, Reiko Watanabe","doi":"10.1016/j.csbj.2025.06.015","DOIUrl":null,"url":null,"abstract":"<p><p>AT-rich interactive domain-containing protein 1A (ARID1A) is frequently mutated in endometrial cancers. Although patient stratification based on mutations or mRNA expression is commonly performed, this approach may not accurately reflect the functional state of ARID1A. This functional state is not only directly reflected in upstream events such as gene expression but also influenced by various regulatory including protein expression and the presence and type of mutations. Although protein expression is more directly correlated with phenotypic outcomes, integrating different omics data remains challenging due to disparities in data availability. To address this challenge, we developed a novel patient stratification method that integrates proteomics and transcriptomics to assess the functional state of ARID1A in patients with uterine corpus endometrial carcinoma. Initially, missing protein expression data were imputed using machine learning, and the patients were labelled based on their ARID1A protein expression. We then labelled the patients according to ARID1A activity, inferred by analysing the transcriptional regulation of genes directly controlled by ARID1A. Finally, patients were stratified by ARID1A functional state, considering both protein expression and the inferred activity label. This approach identified different gene expression patterns that are undetectable using conventional methods based on mRNA expression and mutation. Gene set enrichment and over-representation analyses confirmed that the proposed method revealed immune-related differences in patients with ARID1A-deficient uterine corpus endometrial carcinoma. These results highlight its potential to identify novel therapeutic targets and immune alterations that are undetected by conventional techniques.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2614-2625"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212153/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel method for endometrial cancer patient stratification considering ARID1A protein expression and activity with effective use of multi-omics data.\",\"authors\":\"Junsoo Song, Ayako Ui, Kenji Mizuguchi, Reiko Watanabe\",\"doi\":\"10.1016/j.csbj.2025.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AT-rich interactive domain-containing protein 1A (ARID1A) is frequently mutated in endometrial cancers. Although patient stratification based on mutations or mRNA expression is commonly performed, this approach may not accurately reflect the functional state of ARID1A. This functional state is not only directly reflected in upstream events such as gene expression but also influenced by various regulatory including protein expression and the presence and type of mutations. Although protein expression is more directly correlated with phenotypic outcomes, integrating different omics data remains challenging due to disparities in data availability. To address this challenge, we developed a novel patient stratification method that integrates proteomics and transcriptomics to assess the functional state of ARID1A in patients with uterine corpus endometrial carcinoma. Initially, missing protein expression data were imputed using machine learning, and the patients were labelled based on their ARID1A protein expression. We then labelled the patients according to ARID1A activity, inferred by analysing the transcriptional regulation of genes directly controlled by ARID1A. Finally, patients were stratified by ARID1A functional state, considering both protein expression and the inferred activity label. This approach identified different gene expression patterns that are undetectable using conventional methods based on mRNA expression and mutation. Gene set enrichment and over-representation analyses confirmed that the proposed method revealed immune-related differences in patients with ARID1A-deficient uterine corpus endometrial carcinoma. These results highlight its potential to identify novel therapeutic targets and immune alterations that are undetected by conventional techniques.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2614-2625\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12212153/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.06.015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A novel method for endometrial cancer patient stratification considering ARID1A protein expression and activity with effective use of multi-omics data.
AT-rich interactive domain-containing protein 1A (ARID1A) is frequently mutated in endometrial cancers. Although patient stratification based on mutations or mRNA expression is commonly performed, this approach may not accurately reflect the functional state of ARID1A. This functional state is not only directly reflected in upstream events such as gene expression but also influenced by various regulatory including protein expression and the presence and type of mutations. Although protein expression is more directly correlated with phenotypic outcomes, integrating different omics data remains challenging due to disparities in data availability. To address this challenge, we developed a novel patient stratification method that integrates proteomics and transcriptomics to assess the functional state of ARID1A in patients with uterine corpus endometrial carcinoma. Initially, missing protein expression data were imputed using machine learning, and the patients were labelled based on their ARID1A protein expression. We then labelled the patients according to ARID1A activity, inferred by analysing the transcriptional regulation of genes directly controlled by ARID1A. Finally, patients were stratified by ARID1A functional state, considering both protein expression and the inferred activity label. This approach identified different gene expression patterns that are undetectable using conventional methods based on mRNA expression and mutation. Gene set enrichment and over-representation analyses confirmed that the proposed method revealed immune-related differences in patients with ARID1A-deficient uterine corpus endometrial carcinoma. These results highlight its potential to identify novel therapeutic targets and immune alterations that are undetected by conventional techniques.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology