用于伪随机数生成和多图像加密的三维记忆电阻超混沌映射。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-07-01 DOI:10.1063/5.0270220
Suo Gao, Siqi Ding, Herbert Ho-Ching Iu, Uğur Erkan, Abdurrahim Toktas, Cemaleddin Simsek, Rui Wu, Xianying Xu, Yinghong Cao, Jun Mou
{"title":"用于伪随机数生成和多图像加密的三维记忆电阻超混沌映射。","authors":"Suo Gao, Siqi Ding, Herbert Ho-Ching Iu, Uğur Erkan, Abdurrahim Toktas, Cemaleddin Simsek, Rui Wu, Xianying Xu, Yinghong Cao, Jun Mou","doi":"10.1063/5.0270220","DOIUrl":null,"url":null,"abstract":"<p><p>The resistance state of a memristor can be influenced by external stimuli, and these variations can be converted into a pseudorandom sequence through appropriate circuitry and control mechanisms. By leveraging this property, a reliable and complex pseudorandom number generator suitable for encryption can be designed. To enhance the chaotic complexity of memristor-based discrete systems, this paper introduces a three-dimensional hyperchaotic map based on a memristor (3D-HMBM), which integrates a sine-function nonlinearity with a discrete memristor model. Analyzing its dynamical properties via Lyapunov exponents, the 3D-HMBM exhibits evolution from periodicity to chaos and hyperchaos. The complexity of its iterated sequences is verified through metrics such as Spectral Entropy and C0 complexity. Furthermore, the 3D-HMBM displays a unique phenomenon of infinite coexisting attractors. As initial values vary, the system generates attractors at different positions, suggesting that-in theory-an infinite number of attractors exist. Finally, the simulation results are validated via digital-circuit implementation. Building on this foundation, we propose a multi-image encryption algorithm based on the 3D-HMBM, offering a more secure solution for encrypting large volumes of data. Through statistical testing and cryptographic analysis, we confirm the significant potential of the keystream generated by the 3D-HMBM for cryptographic applications.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-dimensional memristor-based hyperchaotic map for pseudorandom number generation and multi-image encryption.\",\"authors\":\"Suo Gao, Siqi Ding, Herbert Ho-Ching Iu, Uğur Erkan, Abdurrahim Toktas, Cemaleddin Simsek, Rui Wu, Xianying Xu, Yinghong Cao, Jun Mou\",\"doi\":\"10.1063/5.0270220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The resistance state of a memristor can be influenced by external stimuli, and these variations can be converted into a pseudorandom sequence through appropriate circuitry and control mechanisms. By leveraging this property, a reliable and complex pseudorandom number generator suitable for encryption can be designed. To enhance the chaotic complexity of memristor-based discrete systems, this paper introduces a three-dimensional hyperchaotic map based on a memristor (3D-HMBM), which integrates a sine-function nonlinearity with a discrete memristor model. Analyzing its dynamical properties via Lyapunov exponents, the 3D-HMBM exhibits evolution from periodicity to chaos and hyperchaos. The complexity of its iterated sequences is verified through metrics such as Spectral Entropy and C0 complexity. Furthermore, the 3D-HMBM displays a unique phenomenon of infinite coexisting attractors. As initial values vary, the system generates attractors at different positions, suggesting that-in theory-an infinite number of attractors exist. Finally, the simulation results are validated via digital-circuit implementation. Building on this foundation, we propose a multi-image encryption algorithm based on the 3D-HMBM, offering a more secure solution for encrypting large volumes of data. Through statistical testing and cryptographic analysis, we confirm the significant potential of the keystream generated by the 3D-HMBM for cryptographic applications.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0270220\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0270220","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

忆阻器的电阻状态可以受到外界刺激的影响,这些变化可以通过适当的电路和控制机制转换成伪随机序列。利用这一特性,可以设计出可靠的、复杂的、适合于加密的伪随机数生成器。为了提高基于忆阻器的离散系统的混沌复杂性,本文引入了一种基于忆阻器的三维超混沌映射(3D-HMBM),该映射将正弦函数非线性与离散忆阻器模型相结合。通过Lyapunov指数分析其动力学特性,三维hmbm表现出从周期性到混沌和超混沌的演化过程。通过谱熵和C0复杂度等度量来验证迭代序列的复杂度。此外,3D-HMBM还显示出无限共存吸引子的独特现象。随着初始值的变化,系统在不同位置产生吸引子,这表明——理论上——存在无限数量的吸引子。最后,通过数字电路实现对仿真结果进行了验证。在此基础上,我们提出了一种基于3D-HMBM的多图像加密算法,为大量数据的加密提供了更安全的解决方案。通过统计测试和密码学分析,我们证实了3D-HMBM生成的密钥流在密码学应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A three-dimensional memristor-based hyperchaotic map for pseudorandom number generation and multi-image encryption.

The resistance state of a memristor can be influenced by external stimuli, and these variations can be converted into a pseudorandom sequence through appropriate circuitry and control mechanisms. By leveraging this property, a reliable and complex pseudorandom number generator suitable for encryption can be designed. To enhance the chaotic complexity of memristor-based discrete systems, this paper introduces a three-dimensional hyperchaotic map based on a memristor (3D-HMBM), which integrates a sine-function nonlinearity with a discrete memristor model. Analyzing its dynamical properties via Lyapunov exponents, the 3D-HMBM exhibits evolution from periodicity to chaos and hyperchaos. The complexity of its iterated sequences is verified through metrics such as Spectral Entropy and C0 complexity. Furthermore, the 3D-HMBM displays a unique phenomenon of infinite coexisting attractors. As initial values vary, the system generates attractors at different positions, suggesting that-in theory-an infinite number of attractors exist. Finally, the simulation results are validated via digital-circuit implementation. Building on this foundation, we propose a multi-image encryption algorithm based on the 3D-HMBM, offering a more secure solution for encrypting large volumes of data. Through statistical testing and cryptographic analysis, we confirm the significant potential of the keystream generated by the 3D-HMBM for cryptographic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信