{"title":"MCM9缺乏会损害精子发生过程中的DNA损伤修复,导致人类仅支持细胞综合征。","authors":"Xuan Sha, Xin Zhang, Hao Geng, Yuqian Li, Xun Xia, Guotong Li, Rong Hua, Kuokuo Li, Yang Gao, Qunshan Shen, Rui Guo, Yuping Xu, Xiaojin He, Yunxia Cao, Mingxi Liu, Huan Wu","doi":"10.1038/s41420-025-02581-y","DOIUrl":null,"url":null,"abstract":"<p><p>Non-obstructive azoospermia (NOA) represents the most severe form of male infertility; however, its genetic etiology remains largely elusive. MCM9 is crucial for DNA damage repair in mammalian somatic cells, playing a key role in regulating both homologous recombination (HR) and mismatch repair (MMR) pathways. In mice, MCM9 deficiency leads to spermatogenic failure characterized by progressive germ cell depletion and impaired HR repair. However, the underlying mechanism remains unclear in humans. Our study identified two novel homozygous loss-of-function (LoF) mutations in MCM9 in two unrelated NOA patients presenting with Sertoli cell-only syndrome (SCOS). The absence of testicular MCM9 confirmed the pathogenicity of these LoF mutations. Furthermore, diminished HR-mediated DNA repair capacity observed in HEK293T cells, either lacking MCM9 or overexpressing mutant MCM9 plasmids, highlighted the deleterious impact of these LoF mutations on HR repair. Additionally, the confirmed interaction between human testicular MCM9 and both MSH2 and MLH1, alongside findings that human MCM9 is predominantly expressed in spermatogonial stem cells and spermatogonia, provides compelling evidence for the involvement of the MCM9-mediated MMR pathway in maintaining genomic integrity and supporting the viability and proliferation of spermatogonia in humans. Given the poor outcomes of microdissection testicular sperm extraction (micro-TESE) observed in both probands, we propose that biallelic LoF mutations in MCM9 may serve as non-invasive molecular biomarkers for predicting micro-TESE failure. These findings enhance our understanding of the genetic basis of human NOA, particularly SCOS, and provide valuable insights for genetic counseling and fertility guidance tailored to these patients.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"292"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218035/pdf/","citationCount":"0","resultStr":"{\"title\":\"MCM9 deficiency impairs DNA damage repair during spermatogenesis, leading to Sertoli cell-only syndrome in humans.\",\"authors\":\"Xuan Sha, Xin Zhang, Hao Geng, Yuqian Li, Xun Xia, Guotong Li, Rong Hua, Kuokuo Li, Yang Gao, Qunshan Shen, Rui Guo, Yuping Xu, Xiaojin He, Yunxia Cao, Mingxi Liu, Huan Wu\",\"doi\":\"10.1038/s41420-025-02581-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-obstructive azoospermia (NOA) represents the most severe form of male infertility; however, its genetic etiology remains largely elusive. MCM9 is crucial for DNA damage repair in mammalian somatic cells, playing a key role in regulating both homologous recombination (HR) and mismatch repair (MMR) pathways. In mice, MCM9 deficiency leads to spermatogenic failure characterized by progressive germ cell depletion and impaired HR repair. However, the underlying mechanism remains unclear in humans. Our study identified two novel homozygous loss-of-function (LoF) mutations in MCM9 in two unrelated NOA patients presenting with Sertoli cell-only syndrome (SCOS). The absence of testicular MCM9 confirmed the pathogenicity of these LoF mutations. Furthermore, diminished HR-mediated DNA repair capacity observed in HEK293T cells, either lacking MCM9 or overexpressing mutant MCM9 plasmids, highlighted the deleterious impact of these LoF mutations on HR repair. Additionally, the confirmed interaction between human testicular MCM9 and both MSH2 and MLH1, alongside findings that human MCM9 is predominantly expressed in spermatogonial stem cells and spermatogonia, provides compelling evidence for the involvement of the MCM9-mediated MMR pathway in maintaining genomic integrity and supporting the viability and proliferation of spermatogonia in humans. Given the poor outcomes of microdissection testicular sperm extraction (micro-TESE) observed in both probands, we propose that biallelic LoF mutations in MCM9 may serve as non-invasive molecular biomarkers for predicting micro-TESE failure. These findings enhance our understanding of the genetic basis of human NOA, particularly SCOS, and provide valuable insights for genetic counseling and fertility guidance tailored to these patients.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"292\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218035/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02581-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02581-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
MCM9 deficiency impairs DNA damage repair during spermatogenesis, leading to Sertoli cell-only syndrome in humans.
Non-obstructive azoospermia (NOA) represents the most severe form of male infertility; however, its genetic etiology remains largely elusive. MCM9 is crucial for DNA damage repair in mammalian somatic cells, playing a key role in regulating both homologous recombination (HR) and mismatch repair (MMR) pathways. In mice, MCM9 deficiency leads to spermatogenic failure characterized by progressive germ cell depletion and impaired HR repair. However, the underlying mechanism remains unclear in humans. Our study identified two novel homozygous loss-of-function (LoF) mutations in MCM9 in two unrelated NOA patients presenting with Sertoli cell-only syndrome (SCOS). The absence of testicular MCM9 confirmed the pathogenicity of these LoF mutations. Furthermore, diminished HR-mediated DNA repair capacity observed in HEK293T cells, either lacking MCM9 or overexpressing mutant MCM9 plasmids, highlighted the deleterious impact of these LoF mutations on HR repair. Additionally, the confirmed interaction between human testicular MCM9 and both MSH2 and MLH1, alongside findings that human MCM9 is predominantly expressed in spermatogonial stem cells and spermatogonia, provides compelling evidence for the involvement of the MCM9-mediated MMR pathway in maintaining genomic integrity and supporting the viability and proliferation of spermatogonia in humans. Given the poor outcomes of microdissection testicular sperm extraction (micro-TESE) observed in both probands, we propose that biallelic LoF mutations in MCM9 may serve as non-invasive molecular biomarkers for predicting micro-TESE failure. These findings enhance our understanding of the genetic basis of human NOA, particularly SCOS, and provide valuable insights for genetic counseling and fertility guidance tailored to these patients.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.