Karol Mierzejewski, Aleksandra Kurzyńska, Monika Golubska, Ismena Gałęcka, Jarosław Całka, Iwona Bogacka
{"title":"未成熟猪口服暴露于PET微塑料诱导胰腺免疫反应和氧化应激。","authors":"Karol Mierzejewski, Aleksandra Kurzyńska, Monika Golubska, Ismena Gałęcka, Jarosław Całka, Iwona Bogacka","doi":"10.1186/s12864-025-11760-1","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics are a widespread environmental hazard and their impact on human health has become a growing concern in last years. Recently, the potential role of microplastics in the development of various diseases, including diabetes, has been highlighted. Therefore, the aim of this study was to investigate the effects of PET microplastics on the pancreas using immature pigs as a model organism. We analyzed the global transcriptomic profile of the pancreas by RNA-Seq in piglets treated with either a low (0.1 g/day) or a high dose (1 g/day) of PET microplastics for 4 weeks. The analysis revealed a dose-dependent effect of PET microplastics on gene expression. A low dose changed the expression of one gene, while a high dose affected the expression of 86 genes. The differentially expressed genes, including immune cell markers, cytokines and chemokines, may activate the immune system in the pancreas in a way that is characteristic of the pathogenesis of diabetes. In addition, PET microplastics induced oxidative stress in the pancreas. These above imply that oral exposure to PET microplastics could be a new risk factor for the development of diabetes.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"578"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211908/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oral exposure to PET microplastics induces the pancreatic immune response and oxidative stress in immature pigs.\",\"authors\":\"Karol Mierzejewski, Aleksandra Kurzyńska, Monika Golubska, Ismena Gałęcka, Jarosław Całka, Iwona Bogacka\",\"doi\":\"10.1186/s12864-025-11760-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastics are a widespread environmental hazard and their impact on human health has become a growing concern in last years. Recently, the potential role of microplastics in the development of various diseases, including diabetes, has been highlighted. Therefore, the aim of this study was to investigate the effects of PET microplastics on the pancreas using immature pigs as a model organism. We analyzed the global transcriptomic profile of the pancreas by RNA-Seq in piglets treated with either a low (0.1 g/day) or a high dose (1 g/day) of PET microplastics for 4 weeks. The analysis revealed a dose-dependent effect of PET microplastics on gene expression. A low dose changed the expression of one gene, while a high dose affected the expression of 86 genes. The differentially expressed genes, including immune cell markers, cytokines and chemokines, may activate the immune system in the pancreas in a way that is characteristic of the pathogenesis of diabetes. In addition, PET microplastics induced oxidative stress in the pancreas. These above imply that oral exposure to PET microplastics could be a new risk factor for the development of diabetes.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"26 1\",\"pages\":\"578\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-025-11760-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11760-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Oral exposure to PET microplastics induces the pancreatic immune response and oxidative stress in immature pigs.
Microplastics are a widespread environmental hazard and their impact on human health has become a growing concern in last years. Recently, the potential role of microplastics in the development of various diseases, including diabetes, has been highlighted. Therefore, the aim of this study was to investigate the effects of PET microplastics on the pancreas using immature pigs as a model organism. We analyzed the global transcriptomic profile of the pancreas by RNA-Seq in piglets treated with either a low (0.1 g/day) or a high dose (1 g/day) of PET microplastics for 4 weeks. The analysis revealed a dose-dependent effect of PET microplastics on gene expression. A low dose changed the expression of one gene, while a high dose affected the expression of 86 genes. The differentially expressed genes, including immune cell markers, cytokines and chemokines, may activate the immune system in the pancreas in a way that is characteristic of the pathogenesis of diabetes. In addition, PET microplastics induced oxidative stress in the pancreas. These above imply that oral exposure to PET microplastics could be a new risk factor for the development of diabetes.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.