{"title":"基于集成机器学习的scRNA-seq数据预训练标注方法。","authors":"Osama Elnahas, Waleed M Ead, Yushan Qiu, Jian Lu","doi":"10.1186/s12859-025-06151-y","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene expression by allowing researchers to analyze the transcriptomes of individual cells. This technology provides unprecedented insights into cellular heterogeneity, cellular states, and biological processes at a single-cell resolution. The problem of single-cell RNA annotation involves assigning meaningful labels or annotations to each cell in the scRNA-seq dataset, indicating its corresponding cell type, state, or biological function. Current annotation methods are often challenged by limited source data quality, sensitivity to batch effects, and poor adaptability to uncharacterized cell types. We propose an ensemble machine learning-based pre-trained annotation framework that integrates gradient boosting and genetic optimization for robust feature selection. The proposed method uses ensemble learning to enhance annotation accuracy under data scarcity, addressing limitations in existing supervised methods by leveraging a combination of multiple annotated datasets and feature alignment strategies. Through comprehensive benchmarking across varied biological contexts, we demonstrate that the proposed approach significantly improves annotation accuracy and generalization across different scRNA-seq platforms, especially under conditions of reduced reference data. Results confirm its versatility and resilience in accurately annotating cell types, even under reduced data conditions, establishing it as a powerful tool for cell-type classification in scRNA-seq data.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"166"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220795/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ensemble machine learning-based pre-trained annotation approach for scRNA-seq data using gradient boosting with genetic optimizer.\",\"authors\":\"Osama Elnahas, Waleed M Ead, Yushan Qiu, Jian Lu\",\"doi\":\"10.1186/s12859-025-06151-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene expression by allowing researchers to analyze the transcriptomes of individual cells. This technology provides unprecedented insights into cellular heterogeneity, cellular states, and biological processes at a single-cell resolution. The problem of single-cell RNA annotation involves assigning meaningful labels or annotations to each cell in the scRNA-seq dataset, indicating its corresponding cell type, state, or biological function. Current annotation methods are often challenged by limited source data quality, sensitivity to batch effects, and poor adaptability to uncharacterized cell types. We propose an ensemble machine learning-based pre-trained annotation framework that integrates gradient boosting and genetic optimization for robust feature selection. The proposed method uses ensemble learning to enhance annotation accuracy under data scarcity, addressing limitations in existing supervised methods by leveraging a combination of multiple annotated datasets and feature alignment strategies. Through comprehensive benchmarking across varied biological contexts, we demonstrate that the proposed approach significantly improves annotation accuracy and generalization across different scRNA-seq platforms, especially under conditions of reduced reference data. Results confirm its versatility and resilience in accurately annotating cell types, even under reduced data conditions, establishing it as a powerful tool for cell-type classification in scRNA-seq data.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"166\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220795/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06151-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06151-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Ensemble machine learning-based pre-trained annotation approach for scRNA-seq data using gradient boosting with genetic optimizer.
Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of gene expression by allowing researchers to analyze the transcriptomes of individual cells. This technology provides unprecedented insights into cellular heterogeneity, cellular states, and biological processes at a single-cell resolution. The problem of single-cell RNA annotation involves assigning meaningful labels or annotations to each cell in the scRNA-seq dataset, indicating its corresponding cell type, state, or biological function. Current annotation methods are often challenged by limited source data quality, sensitivity to batch effects, and poor adaptability to uncharacterized cell types. We propose an ensemble machine learning-based pre-trained annotation framework that integrates gradient boosting and genetic optimization for robust feature selection. The proposed method uses ensemble learning to enhance annotation accuracy under data scarcity, addressing limitations in existing supervised methods by leveraging a combination of multiple annotated datasets and feature alignment strategies. Through comprehensive benchmarking across varied biological contexts, we demonstrate that the proposed approach significantly improves annotation accuracy and generalization across different scRNA-seq platforms, especially under conditions of reduced reference data. Results confirm its versatility and resilience in accurately annotating cell types, even under reduced data conditions, establishing it as a powerful tool for cell-type classification in scRNA-seq data.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.