椰子:协变量辅助复合零假设检验与应用于高通量实验数据的可复制性分析。

IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Yan Li, Yanmei Li, Han Ma, Zitong Yue, Xin Zhang
{"title":"椰子:协变量辅助复合零假设检验与应用于高通量实验数据的可复制性分析。","authors":"Yan Li, Yanmei Li, Han Ma, Zitong Yue, Xin Zhang","doi":"10.1186/s12859-025-06163-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiple testing of composite null hypotheses is critical for identifying simultaneous signals across studies. While it is common to incorporate external information in simple null hypotheses, exploiting such auxiliary covariates to provide prior structural relationships among composite null hypotheses and boost the statistical power remains challenging.</p><p><strong>Results: </strong>We propose a robust and powerful covariate-assisted composite null hypothesis testing (CoCoNuT) procedure based on a Bayesian framework to identify replicable signals in two studies while asymptotically controlling the false discovery rate. CoCoNuT innovatively adopts a three-dimensional mixture model to consider two primary studies and an integrative auxiliary covariate jointly. While accounting for heterogeneity across studies, the local false discovery rate optimally captures cross-study and cross-feature information, providing improved rankings of feature importance.</p><p><strong>Conclusions: </strong>Theoretical and empirical evaluations confirm the validity and efficiency of CoCoNuT. Extensive simulations demonstrate that CoCoNuT outperforms conventional methods that do not exploit auxiliary covariates while controlling the FDR. We apply CoCoNuT to schizophrenia genome-wide association studies, illustrating its higher power in identifying replicable genetic variants with the assistance of relevant auxiliary studies.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"163"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210505/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coconut: covariate-assisted composite null hypothesis testing with applications to replicability analysis of high-throughput experimental data.\",\"authors\":\"Yan Li, Yanmei Li, Han Ma, Zitong Yue, Xin Zhang\",\"doi\":\"10.1186/s12859-025-06163-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multiple testing of composite null hypotheses is critical for identifying simultaneous signals across studies. While it is common to incorporate external information in simple null hypotheses, exploiting such auxiliary covariates to provide prior structural relationships among composite null hypotheses and boost the statistical power remains challenging.</p><p><strong>Results: </strong>We propose a robust and powerful covariate-assisted composite null hypothesis testing (CoCoNuT) procedure based on a Bayesian framework to identify replicable signals in two studies while asymptotically controlling the false discovery rate. CoCoNuT innovatively adopts a three-dimensional mixture model to consider two primary studies and an integrative auxiliary covariate jointly. While accounting for heterogeneity across studies, the local false discovery rate optimally captures cross-study and cross-feature information, providing improved rankings of feature importance.</p><p><strong>Conclusions: </strong>Theoretical and empirical evaluations confirm the validity and efficiency of CoCoNuT. Extensive simulations demonstrate that CoCoNuT outperforms conventional methods that do not exploit auxiliary covariates while controlling the FDR. We apply CoCoNuT to schizophrenia genome-wide association studies, illustrating its higher power in identifying replicable genetic variants with the assistance of relevant auxiliary studies.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"163\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06163-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06163-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:复合零假设的多重检验对于识别研究中的同步信号至关重要。虽然在简单的零假设中加入外部信息是很常见的,但利用这些辅助协变量来提供复合零假设之间的先验结构关系并提高统计能力仍然具有挑战性。结果:我们提出了一种基于贝叶斯框架的鲁棒且强大的协变量辅助复合零假设检验(CoCoNuT)程序,以识别两项研究中的可复制信号,同时渐近控制错误发现率。CoCoNuT创新地采用了三维混合模型,将两个主要研究和一个综合辅助协变量联合考虑。考虑到研究之间的异质性,局部错误发现率最佳地捕获了交叉研究和交叉特征信息,提供了改进的特征重要性排名。结论:理论和实证评价证实了CoCoNuT的有效性和有效性。大量的模拟表明,在控制FDR时,CoCoNuT优于不利用辅助协变量的传统方法。我们将CoCoNuT应用于精神分裂症全基因组关联研究,说明在相关辅助研究的帮助下,它在识别可复制遗传变异方面具有更高的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coconut: covariate-assisted composite null hypothesis testing with applications to replicability analysis of high-throughput experimental data.

Background: Multiple testing of composite null hypotheses is critical for identifying simultaneous signals across studies. While it is common to incorporate external information in simple null hypotheses, exploiting such auxiliary covariates to provide prior structural relationships among composite null hypotheses and boost the statistical power remains challenging.

Results: We propose a robust and powerful covariate-assisted composite null hypothesis testing (CoCoNuT) procedure based on a Bayesian framework to identify replicable signals in two studies while asymptotically controlling the false discovery rate. CoCoNuT innovatively adopts a three-dimensional mixture model to consider two primary studies and an integrative auxiliary covariate jointly. While accounting for heterogeneity across studies, the local false discovery rate optimally captures cross-study and cross-feature information, providing improved rankings of feature importance.

Conclusions: Theoretical and empirical evaluations confirm the validity and efficiency of CoCoNuT. Extensive simulations demonstrate that CoCoNuT outperforms conventional methods that do not exploit auxiliary covariates while controlling the FDR. We apply CoCoNuT to schizophrenia genome-wide association studies, illustrating its higher power in identifying replicable genetic variants with the assistance of relevant auxiliary studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信