{"title":"椰子:协变量辅助复合零假设检验与应用于高通量实验数据的可复制性分析。","authors":"Yan Li, Yanmei Li, Han Ma, Zitong Yue, Xin Zhang","doi":"10.1186/s12859-025-06163-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiple testing of composite null hypotheses is critical for identifying simultaneous signals across studies. While it is common to incorporate external information in simple null hypotheses, exploiting such auxiliary covariates to provide prior structural relationships among composite null hypotheses and boost the statistical power remains challenging.</p><p><strong>Results: </strong>We propose a robust and powerful covariate-assisted composite null hypothesis testing (CoCoNuT) procedure based on a Bayesian framework to identify replicable signals in two studies while asymptotically controlling the false discovery rate. CoCoNuT innovatively adopts a three-dimensional mixture model to consider two primary studies and an integrative auxiliary covariate jointly. While accounting for heterogeneity across studies, the local false discovery rate optimally captures cross-study and cross-feature information, providing improved rankings of feature importance.</p><p><strong>Conclusions: </strong>Theoretical and empirical evaluations confirm the validity and efficiency of CoCoNuT. Extensive simulations demonstrate that CoCoNuT outperforms conventional methods that do not exploit auxiliary covariates while controlling the FDR. We apply CoCoNuT to schizophrenia genome-wide association studies, illustrating its higher power in identifying replicable genetic variants with the assistance of relevant auxiliary studies.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"163"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210505/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coconut: covariate-assisted composite null hypothesis testing with applications to replicability analysis of high-throughput experimental data.\",\"authors\":\"Yan Li, Yanmei Li, Han Ma, Zitong Yue, Xin Zhang\",\"doi\":\"10.1186/s12859-025-06163-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Multiple testing of composite null hypotheses is critical for identifying simultaneous signals across studies. While it is common to incorporate external information in simple null hypotheses, exploiting such auxiliary covariates to provide prior structural relationships among composite null hypotheses and boost the statistical power remains challenging.</p><p><strong>Results: </strong>We propose a robust and powerful covariate-assisted composite null hypothesis testing (CoCoNuT) procedure based on a Bayesian framework to identify replicable signals in two studies while asymptotically controlling the false discovery rate. CoCoNuT innovatively adopts a three-dimensional mixture model to consider two primary studies and an integrative auxiliary covariate jointly. While accounting for heterogeneity across studies, the local false discovery rate optimally captures cross-study and cross-feature information, providing improved rankings of feature importance.</p><p><strong>Conclusions: </strong>Theoretical and empirical evaluations confirm the validity and efficiency of CoCoNuT. Extensive simulations demonstrate that CoCoNuT outperforms conventional methods that do not exploit auxiliary covariates while controlling the FDR. We apply CoCoNuT to schizophrenia genome-wide association studies, illustrating its higher power in identifying replicable genetic variants with the assistance of relevant auxiliary studies.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"163\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06163-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06163-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Coconut: covariate-assisted composite null hypothesis testing with applications to replicability analysis of high-throughput experimental data.
Background: Multiple testing of composite null hypotheses is critical for identifying simultaneous signals across studies. While it is common to incorporate external information in simple null hypotheses, exploiting such auxiliary covariates to provide prior structural relationships among composite null hypotheses and boost the statistical power remains challenging.
Results: We propose a robust and powerful covariate-assisted composite null hypothesis testing (CoCoNuT) procedure based on a Bayesian framework to identify replicable signals in two studies while asymptotically controlling the false discovery rate. CoCoNuT innovatively adopts a three-dimensional mixture model to consider two primary studies and an integrative auxiliary covariate jointly. While accounting for heterogeneity across studies, the local false discovery rate optimally captures cross-study and cross-feature information, providing improved rankings of feature importance.
Conclusions: Theoretical and empirical evaluations confirm the validity and efficiency of CoCoNuT. Extensive simulations demonstrate that CoCoNuT outperforms conventional methods that do not exploit auxiliary covariates while controlling the FDR. We apply CoCoNuT to schizophrenia genome-wide association studies, illustrating its higher power in identifying replicable genetic variants with the assistance of relevant auxiliary studies.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.