Michelle F. Griffin, Jessica Cook, Annah Morgan, Dario Boffelli, Mauricio Downer, Amanda F. Spielman, Nicholas J. Guardino, Jason L. Guo, Jennifer B. L. Parker, Michael Januszyk, Caleb Valencia, Maxwell Kuhnert, John Lu, Rachel Zwick, Derrick C. Wan, Ophir D. Klein, Michael T. Longaker
{"title":"生长阻滞特异性- 6和血管毒素受体样信号驱动口腔再生伤口修复","authors":"Michelle F. Griffin, Jessica Cook, Annah Morgan, Dario Boffelli, Mauricio Downer, Amanda F. Spielman, Nicholas J. Guardino, Jason L. Guo, Jennifer B. L. Parker, Michael Januszyk, Caleb Valencia, Maxwell Kuhnert, John Lu, Rachel Zwick, Derrick C. Wan, Ophir D. Klein, Michael T. Longaker","doi":"10.1126/scitranslmed.adk2101","DOIUrl":null,"url":null,"abstract":"<div >Rapid and scarless wound repair is a hallmark of the oral mucosa, yet the cellular and molecular mechanisms that enable this regeneration remain unclear. By comparing populations of murine oral mucosal fibroblasts (OMFs) and facial skin fibroblasts (FSFs), we have identified mechanisms that facilitate regeneration over fibrosis. We found that OMFs used growth arrest specific–6 (GAS6)–angiotoxin receptor–like (AXL) signaling to suppress fibrosis-related mechanosignaling through focal adhesion kinase (FAK) in vitro. Inhibition or knockdown of AXL in the murine oral mucosa resulted in fibrotic wounds and increased activation of FAK. Stimulation of AXL by exogenous GAS6 in the murine facial skin yielded wounds that healed regeneratively as assessed by collagen deposition and organization. Rare human oral scars that resulted from repetitive injury showed decreased expression of GAS6 and AXL and increased FAK. Activating AXL by exogenous GAS6 in repetitively injured mouse oral tissue resulted in better wound healing outcomes and reduced scarring. Altogether, we show that AXL signaling is necessary for murine regenerative wound healing in the oral mucosa and sufficient to limit facial skin fibrosis.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 805","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth arrest specific–6 and angiotoxin receptor–like signaling drive oral regenerative wound repair\",\"authors\":\"Michelle F. Griffin, Jessica Cook, Annah Morgan, Dario Boffelli, Mauricio Downer, Amanda F. Spielman, Nicholas J. Guardino, Jason L. Guo, Jennifer B. L. Parker, Michael Januszyk, Caleb Valencia, Maxwell Kuhnert, John Lu, Rachel Zwick, Derrick C. Wan, Ophir D. Klein, Michael T. Longaker\",\"doi\":\"10.1126/scitranslmed.adk2101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Rapid and scarless wound repair is a hallmark of the oral mucosa, yet the cellular and molecular mechanisms that enable this regeneration remain unclear. By comparing populations of murine oral mucosal fibroblasts (OMFs) and facial skin fibroblasts (FSFs), we have identified mechanisms that facilitate regeneration over fibrosis. We found that OMFs used growth arrest specific–6 (GAS6)–angiotoxin receptor–like (AXL) signaling to suppress fibrosis-related mechanosignaling through focal adhesion kinase (FAK) in vitro. Inhibition or knockdown of AXL in the murine oral mucosa resulted in fibrotic wounds and increased activation of FAK. Stimulation of AXL by exogenous GAS6 in the murine facial skin yielded wounds that healed regeneratively as assessed by collagen deposition and organization. Rare human oral scars that resulted from repetitive injury showed decreased expression of GAS6 and AXL and increased FAK. Activating AXL by exogenous GAS6 in repetitively injured mouse oral tissue resulted in better wound healing outcomes and reduced scarring. Altogether, we show that AXL signaling is necessary for murine regenerative wound healing in the oral mucosa and sufficient to limit facial skin fibrosis.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":\"17 805\",\"pages\":\"\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.adk2101\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adk2101","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Rapid and scarless wound repair is a hallmark of the oral mucosa, yet the cellular and molecular mechanisms that enable this regeneration remain unclear. By comparing populations of murine oral mucosal fibroblasts (OMFs) and facial skin fibroblasts (FSFs), we have identified mechanisms that facilitate regeneration over fibrosis. We found that OMFs used growth arrest specific–6 (GAS6)–angiotoxin receptor–like (AXL) signaling to suppress fibrosis-related mechanosignaling through focal adhesion kinase (FAK) in vitro. Inhibition or knockdown of AXL in the murine oral mucosa resulted in fibrotic wounds and increased activation of FAK. Stimulation of AXL by exogenous GAS6 in the murine facial skin yielded wounds that healed regeneratively as assessed by collagen deposition and organization. Rare human oral scars that resulted from repetitive injury showed decreased expression of GAS6 and AXL and increased FAK. Activating AXL by exogenous GAS6 in repetitively injured mouse oral tissue resulted in better wound healing outcomes and reduced scarring. Altogether, we show that AXL signaling is necessary for murine regenerative wound healing in the oral mucosa and sufficient to limit facial skin fibrosis.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.