{"title":"一种基于学习的网络物理系统被动弹性控制器:对抗隐形欺骗攻击和执行器控制权限完全丧失","authors":"Liang Xin;Zhi-Qiang Long","doi":"10.1109/JAS.2024.124683","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems (CPSs) are increasingly vulnerable to cyber-attacks due to their integral connection between cyberspace and the physical world, which is augmented by Internet connectivity. This vulnerability necessitates a heightened focus on developing resilient control mechanisms for CPSs. However, current observer-based active compensation resilient controllers exhibit poor performance against stealthy deception attacks (SDAs) due to the difficulty in accurately reconstructing system states because of the stealthy nature of these attacks. Moreover, some non-active compensation approaches are insufficient when there is a complete loss of actuator control authority. To address these issues, we introduce a novel learning-based passive resilient controller (LPRC). Our approach, unlike observer-based state reconstruction, shows enhanced effectiveness in countering SDAs. We developed a safety state set, represented by an ellipsoid, to ensure CPS stability under SDA conditions, maintaining system trajectories within this set. Additionally, by employing deep reinforcement learning (DRL), the LPRC acquires the capacity to adapt and diverse evolving attack strategies. To empirically substantiate our methodology, various attack methods were compared with current passive and active compensation resilient control methods to evaluate their performance.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 7","pages":"1368-1380"},"PeriodicalIF":19.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Learning-Based Passive Resilient Controller for Cyber-Physical Systems: Countering Stealthy Deception Attacks and Complete Loss of Actuators Control Authority\",\"authors\":\"Liang Xin;Zhi-Qiang Long\",\"doi\":\"10.1109/JAS.2024.124683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems (CPSs) are increasingly vulnerable to cyber-attacks due to their integral connection between cyberspace and the physical world, which is augmented by Internet connectivity. This vulnerability necessitates a heightened focus on developing resilient control mechanisms for CPSs. However, current observer-based active compensation resilient controllers exhibit poor performance against stealthy deception attacks (SDAs) due to the difficulty in accurately reconstructing system states because of the stealthy nature of these attacks. Moreover, some non-active compensation approaches are insufficient when there is a complete loss of actuator control authority. To address these issues, we introduce a novel learning-based passive resilient controller (LPRC). Our approach, unlike observer-based state reconstruction, shows enhanced effectiveness in countering SDAs. We developed a safety state set, represented by an ellipsoid, to ensure CPS stability under SDA conditions, maintaining system trajectories within this set. Additionally, by employing deep reinforcement learning (DRL), the LPRC acquires the capacity to adapt and diverse evolving attack strategies. To empirically substantiate our methodology, various attack methods were compared with current passive and active compensation resilient control methods to evaluate their performance.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 7\",\"pages\":\"1368-1380\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11062733/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11062733/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Learning-Based Passive Resilient Controller for Cyber-Physical Systems: Countering Stealthy Deception Attacks and Complete Loss of Actuators Control Authority
Cyber-physical systems (CPSs) are increasingly vulnerable to cyber-attacks due to their integral connection between cyberspace and the physical world, which is augmented by Internet connectivity. This vulnerability necessitates a heightened focus on developing resilient control mechanisms for CPSs. However, current observer-based active compensation resilient controllers exhibit poor performance against stealthy deception attacks (SDAs) due to the difficulty in accurately reconstructing system states because of the stealthy nature of these attacks. Moreover, some non-active compensation approaches are insufficient when there is a complete loss of actuator control authority. To address these issues, we introduce a novel learning-based passive resilient controller (LPRC). Our approach, unlike observer-based state reconstruction, shows enhanced effectiveness in countering SDAs. We developed a safety state set, represented by an ellipsoid, to ensure CPS stability under SDA conditions, maintaining system trajectories within this set. Additionally, by employing deep reinforcement learning (DRL), the LPRC acquires the capacity to adapt and diverse evolving attack strategies. To empirically substantiate our methodology, various attack methods were compared with current passive and active compensation resilient control methods to evaluate their performance.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.