混合事件触发控制与稳定性分析

IF 19.2 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Ding Wang;Lingzhi Hu;Junfei Qiao
{"title":"混合事件触发控制与稳定性分析","authors":"Ding Wang;Lingzhi Hu;Junfei Qiao","doi":"10.1109/JAS.2024.125067","DOIUrl":null,"url":null,"abstract":"In this paper, a novel hybrid event-triggered control (ETC) method is developed based on the online action-critic technique, which aims at tackling the optimal regulation problem of discrete-time nonlinear systems. In order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain the initial admissible control policy by using an offline iterative method under the time-triggered control framework. Subsequently, a general triggering condition is designed based on the uniform ultimate boundedness of the controlled system. In order to determine a constant interval which can ensure the system stability, another triggering condition is introduced and the asymptotic stability of the closed-loop system satisfying this condition is analyzed from the perspective of the input-to-state stability. The designed online hybrid ETC method not only further improves control efficiency, but also avoids the continuous judgment of the corresponding triggering condition. In addition, the event-based control law can approach the optimal control input within a finite approximation error. Finally, two experimental examples with physical background are conducted to indicate the present results.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 7","pages":"1464-1474"},"PeriodicalIF":19.2000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Event-Triggered Control with Stability Analysis\",\"authors\":\"Ding Wang;Lingzhi Hu;Junfei Qiao\",\"doi\":\"10.1109/JAS.2024.125067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel hybrid event-triggered control (ETC) method is developed based on the online action-critic technique, which aims at tackling the optimal regulation problem of discrete-time nonlinear systems. In order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain the initial admissible control policy by using an offline iterative method under the time-triggered control framework. Subsequently, a general triggering condition is designed based on the uniform ultimate boundedness of the controlled system. In order to determine a constant interval which can ensure the system stability, another triggering condition is introduced and the asymptotic stability of the closed-loop system satisfying this condition is analyzed from the perspective of the input-to-state stability. The designed online hybrid ETC method not only further improves control efficiency, but also avoids the continuous judgment of the corresponding triggering condition. In addition, the event-based control law can approach the optimal control input within a finite approximation error. Finally, two experimental examples with physical background are conducted to indicate the present results.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 7\",\"pages\":\"1464-1474\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11062696/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11062696/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对离散非线性系统的最优调节问题,提出了一种基于在线动作批评技术的混合事件触发控制方法。为了保证在线学习算法的正常执行,在时间触发控制框架下,采用离线迭代法,创建了一个稳定性判据条件来获得初始的可接受控制策略。然后,基于被控系统的一致极限有界性,设计了一般触发条件。为了确定一个能保证系统稳定的恒定区间,引入了另一个触发条件,并从输入-状态稳定性的角度分析了满足此条件的闭环系统的渐近稳定性。所设计的在线混合ETC方法不仅进一步提高了控制效率,而且避免了对相应触发条件的连续判断。此外,基于事件的控制律可以在有限的近似误差范围内逼近最优控制输入。最后,通过两个具有物理背景的实验实例来验证本文的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Event-Triggered Control with Stability Analysis
In this paper, a novel hybrid event-triggered control (ETC) method is developed based on the online action-critic technique, which aims at tackling the optimal regulation problem of discrete-time nonlinear systems. In order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain the initial admissible control policy by using an offline iterative method under the time-triggered control framework. Subsequently, a general triggering condition is designed based on the uniform ultimate boundedness of the controlled system. In order to determine a constant interval which can ensure the system stability, another triggering condition is introduced and the asymptotic stability of the closed-loop system satisfying this condition is analyzed from the perspective of the input-to-state stability. The designed online hybrid ETC method not only further improves control efficiency, but also avoids the continuous judgment of the corresponding triggering condition. In addition, the event-based control law can approach the optimal control input within a finite approximation error. Finally, two experimental examples with physical background are conducted to indicate the present results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信